Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291551

RESUMEN

BACKGROUND: Flaxseed lignans, types of polyphenolic compounds, primarily consist of secoisolariciresinol diglucoside (SDG). Natural plant extracts are becoming increasingly important as feed for ruminant animals. An underutilized plant bioactive component, SDG shows promising benefits for young ruminant production. The objective of this study was to assess the impact of SDG on rumen fermentation using an in vitro rumen simulation technology. Additionally, we tested the effects of SDG (0.20 g kg-1 body weight) on rumen development and production performance of lambs in a production setting. RESULTS: The in vitro addition of 100 mg L-1 SDG demonstrated significant regulatory effects, with a notable decrease in the acetate/propionate ratio (P < 0.05). Feeding trials revealed that SDG significantly increased average daily feed intake and average daily weight gain (P < 0.05), and reduced the acetate/propionate ratio (P < 0.05). This led to a significant increase in the relative abundance of Eubacterium ruminantium (P = 0.038) and Butyrivibrio (P = 0.002). Furthermore, it promoted rumen development and upregulated the relative expression of mRNA of Cyclin E1 and CDK2 in rumen epithelial cells (P < 0.05). CONCLUSION: The SDG extract optimizes the composition of rumen microbiota and the development of rumen epithelial cells, promoting the growth of pre-weaning lambs. The SDG additive exhibits potential as a novel growth promoter for ruminant animals, offering a promising solution for sustainable livestock production. © 2024 Society of Chemical Industry.

2.
J Agric Food Chem ; 72(36): 20005-20013, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213532

RESUMEN

The lignan secoisolariciresinol (SECO) diglucoside (SDG) is a phytoestrogen with diverse effects. LuUGT74S1 glucosylates SECO to SDG, whereby only small amounts of the monoglucoside SMG are formed intermediately, which exhibit increased activity. To identify critical amino acids that are important for enzymatic activity and the SMG/SDG ratio, 3D structural modeling and docking, as well as site-directed mutation studies, were performed. Enzyme assays with ten mutants revealed that four of them had identical kinetic data to LuUGT74S1, while three showed reduced and one increased catalytic efficiency kcat/Km. S82F and E189L substitutions resulted in the complete absence of activity. A17 and Q136 are crucial for the conversion of SMG to SDG as A17S and Q136F mutants exhibited the highest SMG/SDG ratios of 0.7 and 0.4. Kinetic analyses show that diglucosylation is an essentially irreversible reaction, while monoglycosylation is kinetically favored. The results lay the foundation for the biotechnological production of SMG.


Asunto(s)
Butileno Glicoles , Glucosiltransferasas , Cinética , Glucosiltransferasas/genética , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Butileno Glicoles/metabolismo , Butileno Glicoles/química , Mutación , Glucósidos/química , Glucósidos/metabolismo , Mutagénesis Sitio-Dirigida , Lignanos
3.
J Neuroinflammation ; 21(1): 201, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135052

RESUMEN

BACKGROUND: Gender is a significant risk factor for late-onset Alzheimer's disease (AD), often attributed to the decline of estrogen. The plant estrogen secoisolariciresinol diglucoside (SDG) has demonstrated anti-inflammatory and neuroprotective effects. However, the protective effects and mechanisms of SDG in female AD remain unclear. METHODS: Ten-month-old female APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with SDG to assess its potential ameliorative effects on cognitive impairments in a female AD model through a series of behavioral and biochemical experiments. Serum levels of gut microbial metabolites enterodiol (END) and enterolactone (ENL) were quantified using HPLC-MS. Correlation analysis and broad-spectrum antibiotic cocktail (ABx) treatment were employed to demonstrate the involvement of END and ENL in SDG's cognitive improvement effects in female APP/PS1 mice. Additionally, an acute neuroinflammation model was constructed in three-month-old C57BL/6J mice treated with lipopolysaccharide (LPS) and subjected to i.c.v. injection of G15, an inhibitor of G protein-coupled estrogen receptor (GPER), to investigate the mediating role of the estrogen receptor GPER in the cognitive benefits conferred by SDG. RESULTS: SDG administration resulted in significant improvements in spatial, recognition, and working memory in female APP/PS1 mice. Neuroprotective effects were observed, including enhanced expression of CREB/BDNF and PSD-95, reduced ß-amyloid (Aß) deposition, and decreased levels of TNF-α, IL-6, and IL-10. SDG also altered gut microbiota composition, increasing serum levels of END and ENL. Correlation analysis indicated significant associations between END, ENL, cognitive performance, hippocampal Aß-related protein mRNA expression, and cortical neuroinflammatory cytokine levels. The removal of gut microbiota inhibited END and ENL production and eliminated the neuroprotective effects of SDG. Furthermore, GPER was found to mediate the inhibitory effects of SDG on neuroinflammatory responses. CONCLUSION: These findings suggest that SDG promotes the production of gut microbial metabolites END and ENL, which inhibit cerebral ß-amyloid deposition, activate GPER to enhance CREB/BDNF signaling pathways, and suppress neuroinflammatory responses. Consequently, SDG exerts neuroprotective effects and ameliorates cognitive impairments associated with AD in female mice.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Butileno Glicoles , Disfunción Cognitiva , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Microbioma Gastrointestinal , Glucósidos , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Animales , Femenino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Butileno Glicoles/farmacología , Butileno Glicoles/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad
4.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2270-2281, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044590

RESUMEN

The pinoresinol-lariciresinol reductase (PLR), a crucial enzyme in the biosynthesis of lignans in plants, catalyzes a two-step reaction to produce lariciresinol and secoisolariciresinol. Lignans such as lariciresinol are the effective components of traditional Chinese medicine Radix Isatidis in exerting antiviral activity. In order to study the function of the key enzyme PLR in the biosynthesis of lariciresinol in Isatis indigotica, the original plant of Radix Isatidis, IiPLR2 was cloned from I. indigotica, with a full length of 954 bp, encoding 317 amino acids. Multiple sequence alignment showed that IiPLR2 contained a conserved nicotinamide adenine dinucleotide phosphate (NADPH)-binding motif. The phylogenetic tree showcased that IiPLR2 shared the same clade with AtPrR1 from Arabidopsis thaliana. The prokaryotic expression vector pET32a-IiPLR2 was constructed and then transformed into Escherichia coli BL21(DE3) competent cells for protein expression. The purified enzyme IiPLR2 could catalyze the conversion of pinoresinol to lariciresinol and the conversion of lariciresinol to secoisolariciresinol. The cloning, sequencing, and catalytic functional analysis of IiPLR2 in this study enrich the understanding of this kind of functional proteins in I. indigotica and supplement the biosynthesis pathways of lignans. Moreover, this study provides a functional module for further research on metabolic regulation and synthetic biology and lays a foundation for comprehensively revealing the relationship between the spatial structures and catalytic functions of such proteins.


Asunto(s)
Clonación Molecular , Escherichia coli , Isatis , Lignanos , Lignanos/biosíntesis , Lignanos/metabolismo , Isatis/genética , Isatis/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Furanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Secuencia de Aminoácidos , Butileno Glicoles/metabolismo
5.
Food Chem ; 457: 140077, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905833

RESUMEN

Human intestinal microbiota plays a crucial role in converting secoisolariciresinol diglucoside, a lignan found in flaxseed, to enterodiol, which has a range of health benefits: antioxidative, antitumor, and estrogenic/anti-estrogenic effects. Given the high secoisolariciresinol diglucoside content in flaxseed cake, this study investigated the potential of co-fermenting flaxseed cake with fermented soybean product to isolate bacterial strains that effectively convert secoisolariciresinol diglucoside to enterodiol in a controlled environment (in vitro). The co-fermentation process with stinky tofu microbiota significantly altered the lignan, generating 12 intermediate lignan metabolites as identified by targeted metabolomics. One particular promising strain, ZB26, demonstrated an impressive ability to convert secoisolariciresinol diglucoside. It achieved a conversion rate of 87.42 ± 0.33%, with secoisolariciresinol and enterodiol generation rates of 94.22 ± 0.51% and 2.91 ± 0.03%, respectively. Further optimization revealed, under specific conditions (0.5 mM secoisolariciresinol diglucoside, pH 8, 30 °C for 3 days), ZB26 could convert an even higher percentage (97.75 ± 0.05%) of the secoisolariciresinol diglucoside to generate secoisolariciresinol (103.02 ± 0.16%) and enterodiol (3.18 ± 0.31%). These findings suggest that the identified strains ZB26 have promising potential for developing functional foods and ingredients enriched with lignans.


Asunto(s)
Butileno Glicoles , Enterococcus faecium , Fermentación , Lino , Glucósidos , Lignanos , Lignanos/metabolismo , Lignanos/química , Lino/química , Lino/metabolismo , Lino/microbiología , Butileno Glicoles/metabolismo , Glucósidos/metabolismo , Glucósidos/química , Enterococcus faecium/metabolismo , Alimentos de Soja/análisis , Alimentos de Soja/microbiología , Biotransformación , Microbiota , Humanos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo
6.
J Clin Biochem Nutr ; 74(3): 261-266, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799144

RESUMEN

Borderline low-density lipoprotein cholesterol levels (120-139 mg/dl) increase the risk of cardiovascular disease. Therefore, the use of functional dietary nutrients is expected to control blood low-density lipoprotein cholesterol levels. This study aimed to evaluate the effect of dietary secoisolariciresinol diglucoside on blood cholesterol in healthy adults with borderline low-density lipoprotein cholesterol levels. A randomized, parallel, controlled, double-blinded clinical trial was performed for participants with borderline low-density lipoprotein cholesterol levels, for 12 weeks with secoisolariciresinol diglucoside (60 mg/day) or placebo. Lipid profile [low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio, total cholesterol, and triglycerides] and liver disease risk markers were measured at weeks 0, 4, 8, and 12. Analyzing 36 participants in each group revealed a significant interaction between treatment and time, indicating reduced low-density lipoprotein cholesterol (p = 0.049) and total cholesterol (p = 0.020) levels in secoisolariciresinol diglucoside-receiving men but not women. However, no significant differences were observed in other markers regardless of gender. The results suggest that a daily intake of 60 mg of secoisolariciresinol diglucoside lowers low-density lipoprotein cholesterol and total cholesterol levels in men with borderline low-density lipoprotein cholesterol, proposing secoisolariciresinol diglucoside potential as a functional dietary nutrient for cardiovascular disease prevention. This study was registered in the UMIN-CTR database (UMIN000046202).

7.
Int Med Case Rep J ; 17: 167-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504721

RESUMEN

Introduction: Pancreatic cancer (PC) is among the deadliest malignancies. Kidney cancer (KC) is a common malignancy globally. Chemo- or radio-therapies are not very effective to control PC or KC, and overdoses often cause severe site reactions to the patients. As a result, novel treatment strategies with high efficacy but without toxic side effects are urgently desired. Secoisolariciresinol diglucoside (SDG) belongs to plant lignans with potential anticancer activities, but clinical evidence is not available in PC or KC treatment. Patient Concerns: We report a rare case of an 83-year-old female patient with pancreatic and kidney occupying lesions that lacked the conditions to receive surgery or chemo- or radiotherapy. Diagnosis: Pancreatic and kidney cancers. Interventions: We gave dietary SDG to the patient as the only therapeutics. Outcomes: SDG effectively halted progression of both PC and KC. All clinical manifestations, including bad insomnia, loss of appetite, stomach symptoms, and skin itching over the whole body, all disappeared. The initial massive macroscopic hematuria became microscopic and infrequent, and other laboratory results also gradually returned to normal. Most of the cancer biomarkers, initially high such as CEA, CA199, CA724, CA125, came down rapidly, among which CA199 changed most radically. This patient has had progression-free survival of one year so far. Conclusion: These results demonstrate the potent inhibitory effects of SDG on PC and KC of this patient and provide promising novel therapeutics for refractory malignant tumors.

8.
J Sci Food Agric ; 104(10): 5869-5881, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38407005

RESUMEN

BACKGROUND: Flax lignan has attracted much attention because of its potential bioactivities. However, the bioavailability of secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, depends on the bioconversion by the colon bacteria. Lactic acid bacteria (LAB) with ß-glucosidase activity has found wide application in preparing bioactive aglycone. RESULTS: LAB strains with good ß-glucosidase activity were isolated from fermented tofu. Their bioconversion of flax lignan extract was investigated by resting cell catalysis and microbial fermentation, and the metabolism of SDG by Lactiplantibacillus plantarum C5 following fermentation was characterized by widely targeted metabolomics. Five L. plantarum strains producing ß-glucosidase with broad substrate specificity were isolated and identified, and they all can transform SDG into secoisolariciresinol (SECO). L. plantarum C5 resting cell reached a maximum SDG conversion of 49.19 ± 3.75%, and SECO generation of 21.49 ± 1.32% (0.215 ± 0.013 mm) at an SDG substrate concentration of 1 mM and 0.477 ± 0.003 mm SECO was produced at 4 mm within 24 h. Although sixteen flax lignan metabolites were identified following the fermentation of SDG extract by L. plantarum C5, among them, four were produced following the fermentation: SECO, demethyl-SECO, demethyl-dehydroxy-SECO and isolariciresinol. Moreover, seven lignans increased significantly. CONCLUSION: Fermentation significantly increased the profile and level of flax lignan metabolites, and the resting cell catalysis benefits from higher bioconversion efficiency and more straightforward product separation. Resting cell catalysis and microbial fermentation of flax lignan extract by the isolated ß-glucosidase production L. plantarum could be potentially applied in preparing flax lignan ingredients and fermented flaxseed. © 2024 Society of Chemical Industry.


Asunto(s)
Biotransformación , Fermentación , Lino , Lignanos , beta-Glucosidasa , Lignanos/metabolismo , Lignanos/química , Lino/química , Lino/metabolismo , beta-Glucosidasa/metabolismo , beta-Glucosidasa/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimología , Proteínas Bacterianas/metabolismo , Butileno Glicoles/metabolismo , Catálisis , Glucósidos
9.
Molecules ; 29(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398503

RESUMEN

Type 2 diabetes (T2D) is a growing health concern with an estimated 462 million people having been diagnosed worldwide. T2D is characterized by chronically elevated blood glucose and insulin resistance, which culminate in a diminished function of the ß-cell mass in its later stages. This can be perpetuated by and result in inflammation, excess reactive oxygen species production, obesity, and the dysregulation of multiple cellular pathways. Many naturally occurring small molecules have been investigated in terms of their roles in modulating glucose homeostasis and ß-cell function. Many of these compounds can be found in commonly used sources of food and drink. Interestingly, a correlation has been observed between coffee consumption and T2D incidence. However, the specific compounds responsible for this correlation and their mechanisms are still somewhat undetermined. This paper reviews recent research findings on the effects of several polyphenols that are either found in coffee or are metabolites of compounds found in coffee (enterodiol, enterolactone, matairesinol, secoisolariciresinol, kaempferol, quercetin, and chlorogenic acid) on glucose homeostasis and health complications associated with glucose dysregulation, with a special emphasis on their potential anti-diabetic effects. The factors that affect polyphenol content in coffee are also addressed.


Asunto(s)
Café , Diabetes Mellitus Tipo 2 , Humanos , Polifenoles/farmacología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Alimentos
10.
Plant Foods Hum Nutr ; 79(1): 159-165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38236453

RESUMEN

Linseed represents a rich source of nutritional, functional and health-beneficial compounds. Nevertheless, the chemical composition and content of bioactive compounds may be quite variable and potentially affected by various factors, including genotype and the environment. In this study, the proximate chemical composition, lignans content and antioxidant potential of six experimentally grown linseed cultivars were assessed and compared. A diagonal cultivation trial in the University of South Bohemia Experimental Station in Ceské Budejovice, Czech Republic, was established in three subsequent growing seasons (2018, 2019 and 2020). The results showed that the cultivar and growing conditions influenced most studied parameters. The lack of precipitation in May and June 2019 negatively affected the seed yield and the level of secoisolariciresinol diglucoside but did not decrease the crude protein content, which was negatively related to the oil content. The newly developed method for lignans analysis allowed the identification and quantification of secoisolariciresinol diglucoside and matairesinol. Their content correlated positively with the total polyphenol content and antioxidant assays (DPPH and ABTS radical scavenging activity), indicating the significant contribution to the biofunctional properties of linseed. On the other hand, we did not detect minor linseed lignans, pinoresinol and lariciresinol. The results of this study showed the importance of cultivar and growing conditions factors on the linseed chemical composition and the lignans content, determining its nutritional and medicinal properties.


Asunto(s)
Lino , Glucósidos , Lignanos , Antioxidantes/análisis , Butileno Glicoles/análisis , Butileno Glicoles/química , Butileno Glicoles/metabolismo , Lino/química , Lignanos/análisis , Lignanos/química , Lignanos/metabolismo
11.
Front Pharmacol ; 14: 1275730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026992

RESUMEN

Background: Cardiac hypertrophy (CH) is one of the contributing causes of morbidity and mortality. Hyperhomocysteinemia (HHcy) is one of the diseases which may predispose hyperlipidemia and CH. Linagliptin (Lina) and secoisolariciresinol diglucoside (SDG) are known to alleviate a variety of illnesses by reducing oxidative stress and inflammation. Aim: This study aimed to study the effect of HHcy on cardiac tissues, with a special focus on endoplasmic reticulum (ER) stress as a mainstay pathophysiological pathway. In addition, our study examined the protective effect of Lina, SDG, and their combination against HHcy-induced hyperlipidemia and CH in rats. Methods: Seventy-five male Sprague-Dawley rats were randomly divided into five groups, and for 60 days, the following regimen was administered: Group I: rats received distilled water; Group II: rats received methionine (MET) (2 g/kg/day, p.o.); groups III and IV: rats received Lina (3 mg/kg/day, p.o.) and SDG (20 mg/kg/day, p.o.), respectively, followed by MET (2 g/kg/day, p.o.); Group V: rats received Lina and SDG, followed by MET (2 g/kg/day, p.o.). Results: Pretreatment with Lina, SDG, and their combination showed a significant decrease in serum levels of HHcy and an improved lipid profile compared to the MET group. Moreover, both drugs improved cardiac injury, as evidenced by the substantial improvement in ECG parameters, morphological features of the cardiac muscle, and reduced serum levels of cardiac markers. Additionally, Lina and SDG significantly attenuated cardiac oxidative stress, inflammation, and apoptosis. Furthermore, Lina, SDG, and their combination remarkably downregulated the enhanced expression of endoplasmic reticulum (ER) stress markers, GRP78, PERK, ATF-4, CHOP, NF-κB, and SREBP1c compared to the MET-group. Conclusion: Lina and SDG showed cardioprotective effects against HHcy-induced heart hypertrophy and hyperlipidemia in rats.

12.
J Orthop Surg Res ; 18(1): 792, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875947

RESUMEN

OBJECTIVE: Secoisolariciresinol diglucoside (SDG) is a phytoestrogen that has been reported to improve postmenopausal osteoporosis (PMOP) caused by estrogen deficiency. In our work, we aimed to investigate the mechanism of SDG in regulating the expressions of ERs on PMOP model rats. METHODS: Ovariectomization (OVX) was used to establish PMOP model in rats. The experiment was allocated to Sham, OVX, SDG and raloxifene (RLX) groups. After 12-week treatment, micro-CT was used to detect the transverse section of bone. Hematoxylin and Eosin staining and Safranine O-Fast Green staining were supplied to detect the femur pathological morphology of rats. Estradiol (E2), interleukin-6 (IL-6), bone formation and bone catabolism indexes in serum were detected using ELISA. Alkaline phosphatase (ALP) staining was used to detect the osteogenic ability of chondrocytes. Immunohistochemistry and Western blot were applied to detect the protein expressions of estrogen receptors (ERs) in the femur of rats. RESULTS: Compared with the OVX group, micro-CT results showed SDG could lessen the injury of bone and improve femoral parameters, including bone mineral content (BMC) and bone mineral density (BMD). Pathological results showed SDG could reduce pathological injury of femur in OVX rats. Meanwhile, SDG decreased the level of IL-6 and regulated bone formation and bone catabolism indexes. Besides, SDG increased the level of E2 and conversed OVX-induced decreased the expression of ERα and ERß. CONCLUSION: The treatment elicited by SDG in OVX rats was due to the reduction of injury and inflammation and improvement of bone formation index, via regulating the expression of E2 and ERs.


Asunto(s)
Osteoporosis Posmenopáusica , Osteoporosis , Femenino , Humanos , Ratas , Animales , Receptores de Estrógenos , Interleucina-6 , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Osteoporosis/metabolismo , Estrógenos , Densidad Ósea , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/etiología , Ovariectomía/efectos adversos
13.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(7): 967-978, 2023 Jul 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37724399

RESUMEN

OBJECTIVES: Trans-fatty acids (TFAs), primarily derived from the food industry's production processes, have become a globally recognized public health issue due to the detrimental impact they have on human well-being. Secoisolariciresinol diglucoside (SDG) is a polyphenolic compound derived from flax lignans, possessing antioxidative properties. This study aims to investigate the protective effect of SDG on kidney oxidative damage in offspring of mice caused by maternal exposure to TFA during pregnancy and lactation. METHODS: A total of 30 c57BL/6 female rats were randomly divided into 5 groups: a control group, a TFA-exposed group, a low-(TFA+LSDG) group, a medium-(TFA+MSDG) group, and a high-(TFA+HSDG) group (n=6 in each group). With the exception of the control group, the maternal mice in the remaining 4 groups received a daily oral gavage of TFA at a dosage of 60 mg/(kg·BW) throughout the experimental period. The mothers in the control group were administered physiological saline via oral gavage once daily. Meanwhile, the 3 SDG intervention groups were provided with ad libitum access to SDG feed containing 10 mg/kg (low), 20 mg/kg (medium), and 30 mg/kg (high) of SDG. The female mice were conceived overnight. If the vaginal plug appeared in the next morning, the female mice were conceived and included in the experimental stage until the end of the 21th day lactation period. The body weight and kidney mass of offspring were recorded, and the kidney coefficient was calculated. The kidney was detected by HE staining to observe the histopathological changes, and the level of reactive oxidative species (ROS) was detected by fluorescence probe-dihydroethidium (DHE) staining; the expression levels of total superoxide dismutase (T-SOD) and malondialdehyde (MDA) in renal homogenate were detected, and the expression of nuclear factor E2-related fator2 (Nrf2) and hemeoxygenase-1 (HO-1) protein was analyzed by immunohistochemistry (IHC) staining. The mRNA expressions of Nrf2 and HO-1 were detected by real-time PCR, and the protein expression of Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase-1 (GPx-1), Nrf2 and HO-1 were detected by Western blotting. RESULTS: Compared with the control group, the kidney coefficient in the TFA-exposed group was increased, the morphology and structure of kidney tissue was abnormal; the activity of T-SOD enzyme was decreased, and the content of MDA was increased, the level of ROS was increased; the expressions of Cu/Zn-SOD, Mn-SOD, GPx1 protein were decreased, and the mRNA and protein expressions of Nrf2 and HO-1 were decreased, there were all significant difference (all P<0.05). Compared with the TFA-exposed group, the ROS levels were reduced, and the T-SOD enzyme activity as well as the protein expression of Cu/Zn-SOD, GPx-1, Mn-SOD, Nrf2 and HO-1 were up-regulated in the low, middle and high dose SDG intervention groups; the kidney coefficient and MDA content were decreased in the middle and high dose SDG groups; the Nrf2 mRNA expression in the high dose SDG group was up-regulated, there were all significant difference (all P<0.05). CONCLUSIONS: Maternal exposure to TFA during pregnancy and lactation can lead to oxidative damage in the kidney of offspring, and the SDG intervention may alleviate TFA-induced oxidative damage by up-regulating the expression of Nrf2 and HO-1 signal pathway.


Asunto(s)
3,4-Metilenodioxianfetamina , Ácidos Grasos trans , Humanos , Embarazo , Femenino , Ratones , Ratas , Animales , Ácidos Grasos trans/toxicidad , Exposición Materna , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Riñón , Superóxido Dismutasa , Estrés Oxidativo
14.
Molecules ; 28(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570714

RESUMEN

Secoisolariciresinol (SECO) is one of the major lignans occurring in various grains, seeds, fruits, and vegetables. The gut microbiota plays an important role in the biotransformation of dietary lignans into enterolignans, which might exhibit more potent bioactivities than the precursor lignans. This study aimed to identify, synthesize, and evaluate the microbial metabolites of SECO and to develop efficient lead compounds from the metabolites for the treatment of osteoporosis. SECO was fermented with human gut microbiota in anaerobic or micro-aerobic environments at different time points. Samples derived from microbial transformation were analyzed using an untargeted metabolomics approach for metabolite identification. Nine metabolites were identified and synthesized. Their effects on cell viability, osteoblastic differentiation, and gene expression were examined. The results showed that five of the microbial metabolites exerted potential osteogenic effects similar to those of SECO or better. The results suggested that the enterolignans might account for the osteoporotic effects of SECO in vivo. Thus, the presence of the gut microbiota could offer a good way to form diverse enterolignans with bone-protective effects. The current study improves our understanding of the microbial transformation products of SECO and provides new approaches for new candidate identification in the treatment of osteoporosis.


Asunto(s)
4-Butirolactona , Lignanos , Humanos , Dieta , Lignanos/farmacología , Lignanos/metabolismo , Butileno Glicoles/farmacología , Butileno Glicoles/metabolismo
15.
Front Pharmacol ; 14: 1199294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497114

RESUMEN

Introduction: Fast food is a major risk factor for atherosclerosis, a leading cause of morbidity and mortality in the Western world. Apelin, the endogenous adipokine, can protect against cardiovascular disease via activating its receptor, APJ. Concurrently, secoisolariciresinol diglucoside (SDG), a flaxseed lignan extract (FLE), showed a therapeutic impact on atherosclerosis. The current study aimed to examine the effect of SDG on cafeteria diet (CAFD)-induced vascular injury and cardiac fibrosis via tracking the involvement of the apelin/APJ pathway. Methods: Thirty male rats were allocated into control, FLE-, CAFD-, CAFD/FLE-, and CAFD/FLE/F13A-treated rats, where F13A is an APJ blocker. All treatments lasted for 12 weeks. Results and discussion: The CAFD-induced cardiovascular injury was evidenced by histological distortions, dyslipidemia, elevated atherogenic indices, cardiac troponin I, collagen percentage, glycogen content, and apoptotic markers. CAFD increased both the gene and protein expression levels of cardiac APJ, apelin, and FOXO3a, in addition to increasing endothelin-1, VCAM1, and plasminogen activator inhibitor-1 serum levels and upregulating cardiac MMP-9 gene expression. Moreover, CAFD reduced serum paraoxonase 1 and nitric oxide levels, cardiac AMPK, and nuclear Nrf2 expression. FLE attenuated CAFD-induced cardiovascular injury. Such effect was reduced in rats receiving the APJ blocker, implicating the involvement of apelin/APJ in FLE protective mechanisms. Conclusion: FLE supplementation abrogated CAFD-induced cardiac injury and endothelial dysfunction in an apelin/APJ-dependent manner.

16.
Food Sci Nutr ; 11(6): 2620-2630, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37324915

RESUMEN

Fennel seeds and flaxseed have been traditionally used against many medical ailments due to their medicinal characteristics. The aim of the study was to investigate the health properties of secoisolariciresinol diglucoside (SDG) and anethole from flaxseed and fennel seeds in rats fed with high-fat diet. Histopathological changes in the heart and liver were also examined. Sixty rats were divided into two main groups. Group I (10 rats) was used as a negative control group and fed on the basal diet only. Group II (50 rats) was fed a hypercholesterolemic diet but not given any drugs during the trial for 2 weeks. This group was further divided into five subgroups (10 rats each). One of them was fed on the basal diet and used as a positive control group. However, the other four subgroups were fed on basal diets and anethole (20 mg/kg/day, orally), SDG (20 mg/kg/day, orally), a mixture of anethole + SDG (10 + 10 mg/kg/day, orally), and atorvastatin (10 mg/kg/day, orally) for 6 weeks. Compared to control, treatment with a combination of anethole + SDG showed a significant (p ≤ .05) improvement in serum levels of triglyceride (TG) (137.88 ± 1.61 mg/dL), total cholesterol-(TC) (180.12 ± 8.99 mg/dL), LDL-C (46.40 ± 6.67 mg/dL), VLDL-C (11.81 ± 1.07 mg/dL), aspartate aminotransferase (AST) (75.97 ± 6.92 U/L), alanine aminotransferase (ALT) (34.83 ± 2.17 U/L), alkaline phosphatase (ALP) (130.65 ± 1.05 U/L), and malondialdehyde (MDA) (30.12 ± 1.89 mmol/g), and improved activities of catalase (70.99 ± 3.29 U/g) and superoxide dismutase (SOD) (35.13 ± 2.53 U/dL) enzymes while SDG and anethole group had relatively less impact. Atorvastatin also improved serum levels of triglyceride, total cholesterol, LDL-C, and VLDL-C significantly and rose serum high-density lipoprotein cholesterol (HDL-C) levels considerably meanwhile it had a minor but negative impact on AST, ALT, and ALP, and negligible impact on activities of MDA, CAT, and SOD enzymes compared to the positive control group. The study revealed that combining anethole and SDG may improve dyslipidemia, improve lipid profile, decrease risks of chronic heart diseases, increase HDL-C, and enhance antioxidant enzymes' activities.

17.
Biomed Pharmacother ; 164: 114964, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269815

RESUMEN

Osteoarthritis (OA) is an age-related joint disease in which inflammation and extracellular matrix (ECM) degradation play a crucial role in the destruction of articular cartilage. Secoisolariciresinol diglucoside (SDG), the main lignan in wholegrain flaxseed, which has been reported to remarkably suppress inflammation and oxidative stress, may have potential therapeutic value in OA. In this study, the effect and mechanism of SDG against cartilage degeneration were verified in the destabilization of the medial meniscus (DMM) and collagen-induced (CIA) arthritis models and interleukin-1ß (IL-1ß)-stimulated osteoarthritis chondrocyte models. From our experiments, SDG treatment downregulated the expression of pro-inflammatory factors induced by IL-1ß in vitro, including inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6). Additionally, SDG promoted the expression of collagen II (COL2A1) and SRY-related high-mobility-group-box gene 9(SOX9), while suppressing the expression of a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5) and matrix metalloproteinases 13(MMP13), which leads to catabolism. Consistently, in vivo, SDG has been identified to have chondroprotective effects in DMM-induced and collagen-induced arthritis models. Mechanistically, SDG exerted its anti-inflammation and anti-ECM degradation effects by activating the Nrf2/HO-1 pathway and inhibiting the nuclear factor kappa B (NF-κB) pathway. In conclusion, SDG ameliorates the progression of OA via the Nrf2/NF-κB pathway, which indicates that SDG may have therapeutic potential for OA.


Asunto(s)
FN-kappa B , Osteoartritis , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Osteoartritis/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-1beta/metabolismo , Condrocitos/metabolismo , Ciclooxigenasa 2/metabolismo
18.
Foods ; 12(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36766124

RESUMEN

Extending the shelf life of gluten-free bread (GFB) is a challenge. Mainly due to the ingredients used and their characteristics, GFB has numerous drawbacks such as unsatisfactory texture and rapid staling beyond a low nutritional value. In the present study, flaxseed oil cake extract (FOCE) was used to replace water (25-100%) in GFB formulations in order to test FOCE's potential to reduce GFB staling and extend microbial stability. Texture (TPA test), water activity (LF NMR), acidity (pH measurements) and microbiological quality of GFBs were tested. Moreover, the content of a lignan with broad health-promoting potential, secoisolariciresinol diglucoside (SDG), in GFB with FOCE was analyzed. The results showed that the use of FOCE enriched experimental GFB in valuable SDG (217-525 µg/100 g DM) while not causing adverse microbiological changes. A moderate level (25-50%) of FOCE did not change the main texture parameters of GFB stored for 72 h, the quality of which was comparable to control bread without FOCE. Meanwhile, higher proportions of FOCE (75-100% of water replacement) shortened GFB shelf life as determined by water activity and texture profile, suggesting that GFB with FOCE should be consumed fresh. To summarize, FOCE at moderate levels can add value to GFBs without causing a drop in quality, while still fitting in with the idea of zero waste and the circular economy.

19.
Crit Rev Food Sci Nutr ; 63(29): 9843-9858, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35532015

RESUMEN

Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.


Asunto(s)
Lino , Proteínas HMGA , Hiperlipidemias , Lignanos , Animales , Humanos , Lino/metabolismo , Lípidos , Triglicéridos/metabolismo , Colesterol/metabolismo , Polímeros/metabolismo , Proteínas HMGA/metabolismo , Mamíferos/metabolismo
20.
Food Chem ; 404(Pt B): 134641, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323014

RESUMEN

Thermal transformations of polyphenols from the lignan and stilbene families were investigated at temperatures ranging from 200 °C to 250 °C, in polyethylene glycol (PEG-400), dimethylformamide (DMF) and in sunflower oil (SO). The polyphenols showed varying degrees of thermal stabilities and in some cases intramolecular transformations were observed. The formed products were isolated and characterized. Oligomerization of the polyphenols at thermo-oxidative conditions was also investigated. Finally, the antioxidative activity of the polyphenols against thermo-oxidative degradation α-linoleic acid was investigated at 200 °C. The results suggested that the studied substrates retained their antioxidative properties at elevated temperatures, with stilbenes showing most efficient protection against thermo-oxidative degradation of polyunsaturated fatty acids.


Asunto(s)
Lignanos , Estilbenos , Humanos , Antioxidantes/química , Polifenoles/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA