RESUMEN
Seaweed extracts (SWEs) are becoming integrated into crop production systems due to their multiple beneficial effects including growth promotion and induction of defence mechanisms. However, the comprehensive molecular mechanisms of these effects are yet to be elucidated. The current study investigated the transcriptomic changes induced by SWEs derived from Sargassum vulgare and Acanthophora spicifera on tomato and sweet pepper plants. Tomato and sweet pepper plants were subjected to foliar treatment with alkaline extracts prepared from the above seaweeds. Transcriptome changes in the plants were assessed 72 h after treatments using RNA sequencing. The treated plants were also analysed for defence enzyme activities, nutrient composition and phytohormonal profiles. The results showed the significant enrichment of genes associated with several growth and defence processes including photosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, plant-pathogen interaction, secondary metabolite metabolism, MAPK signalling and amino acid biosynthesis. Activities of defence enzymes were also significantly increased in SWE-treated plants. Plant nutrient profiling showed significant increases in calcium, potassium, nitrogen, sulphur, boron, copper, iron, manganese, zinc and phosphorous levels in SWE-treated plants. Furthermore, the levels of auxins, cytokinins and gibberellins were also significantly increased in the treated plants. The severity of bacterial leaf spot and early blight incidence in plants treated with SWE was significantly reduced, in addition to other effects like an increase in chlorophyll content, plant growth, and fruit yield. The results demonstrated the complex effect of S. vulgare and A. spicifera extracts on the plants' transcriptome and provided evidence of a strong role of these extracts in increasing plant growth responses while priming the plants against pathogenic attack simultaneously. The current study contributes to the understanding of the molecular mechanisms of SWEs in plants and helps their usage as a viable organic input for sustainable crop production.
RESUMEN
The use of seaweed-based bioproducts has been gaining momentum in crop production systems owing to their unique bioactive components and effects. They have phytostimulatory properties that result in increased plant growth and yield parameters in several important crop plants. They have phytoelicitor activity as their components evoke defense responses in plants that contribute to resistance to several pests, diseases, and abiotic stresses including drought, salinity, and cold. This is often linked to the upregulation of important defense-related genes and pathways in the plant system, priming the plant defenses against future attacks. They also evoke phytohormonal responses due to their specific components and interaction with plant growth regulation. Treatment by seaweed extracts and products also causes significant changes in the microbiome components of soil and plant in support of sustainable plant growth. Seaweed extracts contain a plethora of substances which are mostly organic, but trace levels of inorganic nutrient elements are also present. Fractionation of seaweed extracts into their components and their respective bioassays, however, has not yielded favorable growth effects. Only the whole seaweed extracts have been consistently proven to be very effective, which highlights the role of multiple components and their complex interactive effects on plant growth processes. Since seaweed extracts are highly organic, they are ideally suited for organic farming and environmentally sensitive crop production. They are also very compatible with other crop inputs, paving the way for an integrated management approach geared towards sustainability. The current review discusses the growth and functional effects evoked by seaweed extracts and their modes and mechanisms of action in crop plants which are responsible for elicitor and phytostimulatory activities. The review further analyses the potential value of seaweed extracts in integrated crop management systems towards sustainable crop production.