Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Talanta ; 281: 126893, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39288586

RESUMEN

Cancer antigen 125 (CA125) is the gold standard biomarker for clinical diagnosis of ovarian cancer, with a threshold value of 35 U/mL in serum. In this paper, a disposable ultrasensitive immunosensor based on Ti3C2Tx-MXene/amino-functionalized carbon nanotube (NH2-CNT) modified screen-printed carbon electrode (SPCE) was constructed for the detection of the ovarian cancer antigen CA125. By optimizing the mass ratio of Ti3C2Tx to NH2-CNT, Ti3C2Tx/NH2-CNT composite with excellent electrochemical properties was prepared, which is beneficial for amplifying the initial electrochemical signal. The positively charged NH2-CNT effectively alleviated the stacking problem of Ti3C2Tx, and its amino group also facilitated the covalent immobilization of the capture antibody. Meanwhile, chitosan (CS) with excellent film-forming ability was also used to successfully enhance the adsorption of electrode material, thus improving the stability of the sensor. In addition, CS could further enhance the current signal. The prepared immunosensor exhibited excellent performance in CA125 detection with a wide linear range from 1 mU/mL to 500 U/mL, and good selectivity, reproducibility and lomg-term stability. Furthermore, the immunosensor showed satisfactory results for the detection of CA125 in clinical serum samples, which is promising for the clinical screening, early diagnosis and prognostic examination of ovarian cancer.

2.
Heliyon ; 10(14): e34689, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149019

RESUMEN

The current study presents the creation of a straightforward and sensitive sensor based on ZnO/Co3O4 nanocomposite modified screen-printed electrode (ZnO/Co3O4NC/SPE) for levodopa determination. At ZnO/Co3O4NC/SPE, an oxidative peak for levodopa solution in pH 6.0 phosphate buffer solution (PBS) were seen that were both more resolved and more enhanced. Levodopa was measured using differential pulse voltammetry (DPV), which showed an excellent linear range (0.001-800.0 µM) and detection limit (0.81 nM). The presence of interference did not affect the electrochemical response of levodopa at ZnO/Co3O4NC/SPE, demonstrating high selectivity. Levodopa in a real samples have been successfully detected using the manufactured sensor.

3.
Appl Spectrosc ; : 37028241267920, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090839

RESUMEN

Growing demand for pesticides has created an environment prone to deceptive activities, where counterfeit or adulterated pesticide products infiltrate the market, often escaping rapid detection. This situation presents a significant challenge for sensor technology, crucial in identifying authentic pesticides and ensuring agricultural safety practices. Raman spectroscopy emerges as a powerful technique for detecting adulterants. Coupling the electrochemical techniques allows a more specific and selective detection and compound identification. In this study, we evaluate the efficacy of spectroelectrochemical measurements by coupling a potentiostat and Raman spectrograph to identify paraquat, a nonselective herbicide banned in several countries. Our findings demonstrate that applying -0.70 V during measurements yields highly selective Raman spectra, highlighting the primary vibrational bands of paraquat. Moreover, the selective Raman signal of paraquat was discernible in complex samples, including tap water, apple, and green cabbage, even in the presence of other pesticides such as diquat, acephate, and glyphosate. These results underscore the potential of this technique for reliable pesticide detection in diverse and complex matrices.

4.
Talanta ; 280: 126776, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216420

RESUMEN

Cortisol is a well-known stress biomarker; this study focuses on using electrochemical immuno-sensing to measure the concentration of cortisol selectively and sensitively in artificial samples. Anti-cortisol antibodies have been immobilised on polycrystalline Au electrodes via strong covalent thiol bonds, fabricating an electrochemical bio-immunosensor for cortisol detection. IrOx was then anodically electrodeposited as a reference electrode on a commercial screen-printed electrode and electrochemical impedance spectrometry (EIS) studies were used to correlate the electrochemical response to cortisol concentration and the induced changes in charge transfer resistance (Rct). A linear relationship between the Rct and the logarithm of cortisol concentration was found in concentrations ranging from 1 ng/mL to 1 mg/mL with limit of detection at 11.85 pg/mL (32.69 pM). The modification of the reference electrode with iridium oxide has greatly improved the reproducibility of the screen-printed electrode. The sensing system can provide a reliable and sensitive detection approach for cortisol measurements.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Hidrocortisona , Iridio , Hidrocortisona/análisis , Iridio/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Sistemas de Atención de Punto , Humanos , Límite de Detección , Oro/química , Técnicas Biosensibles/métodos
5.
Mikrochim Acta ; 191(9): 534, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136796

RESUMEN

Screen-printed carbon electrodes (SPCE) functionalized with MXene-based three-dimensional nanomaterials are reported for rapid determination of creatinine. Ti3C2TX MXene with in situ reduced AuNPs (MXene@AuNP) were used as a coreactant accelerator for efficient immobilization of enzymes. Creatinine could be oxidized by chitosan-embedded creatinine amidohydrolase, creatine amidinohydrolase, or sarcosine oxidase to generate H2O2, which could be electrochemically detected enhanced by Prussian blue (PB). The enzyme@CS/PB/MXene@AuNP/SPCE detected creatinine within the range 0.03-4.0 mM, with a limit of detection of 0.01 mM, with an average recovery of 96.8-103.7%. This indicates that the proposed biosensor is capable of detecting creatinine in a short amount of time (4 min) within a ± 5% percentage error, in contrast with the standard clinical colorimetric method. With this approach, reproducible and stable electrochemical responses could be achieved for determination of creatinine in serum, urine, or saliva. These results demonstrated its potential for deployment in resource-limited settings for early diagnosis and tracking the progression of chronic kidney disease (CKD).


Asunto(s)
Técnicas Biosensibles , Carbono , Creatinina , Técnicas Electroquímicas , Electrodos , Ferrocianuros , Oro , Peróxido de Hidrógeno , Límite de Detección , Nanopartículas del Metal , Sarcosina-Oxidasa , Ureohidrolasas , Creatinina/sangre , Creatinina/orina , Carbono/química , Humanos , Sarcosina-Oxidasa/química , Oro/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Ferrocianuros/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Peróxido de Hidrógeno/química , Nanopartículas del Metal/química , Ureohidrolasas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Quitosano/química , Pruebas en el Punto de Atención , Amidohidrolasas , Titanio
6.
Talanta ; 280: 126688, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128315

RESUMEN

In contemporary society, developing dependable point-of-care (POC) biosensors for the timely detection of cancer markers is crucial. Among various sensor types, screen-printed electrode (SPE)-based sensors, particularly electrochemical ones, stand out as promising candidates for POC applications. Despite ongoing efforts to create numerous SPE-based sensors, there is a continuous pursuit to enhance their sensitivity and analytical capabilities. This study presents an advanced electrochemical sensor designed to sensitively detect the hepatocellular carcinoma (HCC) marker Alpha-fetoprotein (AFP) in saliva. The sensor employs a gold SPE modified with hydroxyapatite, TiO2 nanoparticles, 1-butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ionic liquid (IL), and AFP monoclonal antibodies. After thorough characterization and optimization using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), the biosensor exhibited a broad detection range (0.01-400 ng/mL), a low limit of detection (LOD) at 0.058 ng/mL, and demonstrated high selectivity, repeatability, reproducibility, and stability. Furthermore, when tested with spiked human saliva samples, the biosensor displayed excellent recovery and robustness, showcasing its potential for noninvasive and POC diagnosis of HCC. In an environmentally conscious evaluation, the biosensor's greenness was assessed using the AGREE metric, yielding a high score of 0.85. This score indicates the biosensor's alignment with the principles of green analytical chemistry, underlining its eco-friendly attributes. This innovative electrochemical sensor contributes to the ongoing efforts for efficient and reliable POC diagnostic tools and aligns with a broader commitment to developing environmentally friendly solutions.


Asunto(s)
Técnicas Biosensibles , Durapatita , Técnicas Electroquímicas , Líquidos Iónicos , Saliva , Titanio , alfa-Fetoproteínas , Líquidos Iónicos/química , Titanio/química , Durapatita/química , Humanos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/inmunología , Saliva/química , Límite de Detección , Electrodos , Tecnología Química Verde , Biomarcadores de Tumor/análisis
7.
Diagn Microbiol Infect Dis ; 110(3): 116473, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39128207

RESUMEN

INTRODUCTION: Due to most likely use of Bacillus anthracis in biological terrorism agents, the rapid and sensitive detection of its spores is crucial in both taking prophylactic measures and proper treatment. This study aimed to develop an amperometric electrochemical immunosensor for the detection of B. anthracis spores. METHODS: A new amperometric biosensor was designed using a combination of magnetic beads and multiplex screen-printed electrodes. This method measures changes in current intensity resulting from oxidation and reduction in the working electrode directly to spore concentrations. RESULTS: A standard curve was formed to test the number of live spores between 2 × 102-2 × 104 spores/ml concentrations. LOD and LOQ values were found to be 92 and 272 spores/ml, respectively. No cross-reactions were seen for Bacillus subtilis, Bacillus cereus and Bacillus thuringiencis spores. CONCLUSIONS: It is shown that the designed Anthrax immunosensor has high sensitivity and selectivity with rapid detection results.


Asunto(s)
Bacillus anthracis , Técnicas Biosensibles , Técnicas Electroquímicas , Esporas Bacterianas , Esporas Bacterianas/aislamiento & purificación , Bacillus anthracis/aislamiento & purificación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Límite de Detección , Sensibilidad y Especificidad , Electrodos , Carbunco/diagnóstico , Carbunco/microbiología
8.
Mikrochim Acta ; 191(8): 459, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985347

RESUMEN

A renewable electrochemical screen-printed electrode (SPE) is proposed based on magnetic bamboo-like nitrogen-carbon (N-C) nanotubes loaded with nickel-cobalt alloy (NiCo) nanoparticles (NiCo@N-CNTs) for the determination of ractopamine (RAC). During the preparation of NiCo@N-CNTs, Co-MOF-67 (ZIF-67) was firstly synthesized, and then blended with dicyandiamide and nickel acetate, followed by a one-step pyrolysis procedure to prepare NiCo@N-doped carbon nanotubes. The surface morphology, structure, and chemical composition of NiCo@N-CNTs were characterized by SEM, TEM, XRD, XPS, and EDS. The electrocatalytic and electrochemical behavior of NiCo@N-CNTs were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results demonstrated that NiCo@N-CNTs possessed remarkable conductivity and electrocatalysis to the oxidation of ractopamine (RAC). By using screen-printed electrode (SPE), NiCo@N-CNTs, and a designed base support, a magnetic RAC sensor (NiCo@N-CNTs/SPE) was successfully constructed. It presented a detection linear range of 0.05-80 µM with a detection limit of 12 nM (S/N = 3). It also exhibited good sensitivity, reproducibility, and practicability in spiked real pork samples. Since the adhesion of NiCo/N-CNTs on SPE was controlled by magnet, the NiCo@N-CNTs was easily detached from the SPE surface by magnetism and thus displayed excellent renewability. This work broadened insights into portable devices for on-site and real-time analysis.

9.
Chemosphere ; 361: 142481, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823428

RESUMEN

The study presents the successful development of a new electrochemical sensor with low cost and disposability for application in nitrofurazone detection in environmental and pharmaceutical samples. The sensors were fabricated using materials obtained from local storage and conductive carbon ink. The modification of the screen-printed electrodes with the hybrid nanomaterial based on silver nanoparticles, carbon quantum dots, and carbon nanotubes showed synergistic contributions in the nitrofurazone electrooxidation, as observed in the wide linear range (0.008 at 15.051 µM), with a sensitivity of 0.650 µA/µM. The limit of detection obtained was 4.6 nM. Differential pulse voltammetry, cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction analysis, and high-resolution transmission electron microscopy were used to evaluate the electrochemical and structural characteristics. Studies of possible interferences were considered with nitrofurazone in the presence of the ions and organic molecules. The results were satisfactory, with a variation of 93.3% ± 4.39% at 100% ± 2.40%. The low volume used in the analyses (50 µL), disposability, high sensibility, selectivity, and low limit of detection are advantages that make the proposed sensor an electrochemical tool of high viability for the NFZ detection in environmental matrices and pharmaceutical formulations.


Asunto(s)
Antibacterianos , Técnicas Electroquímicas , Nanopartículas del Metal , Nanotubos de Carbono , Nitrofurazona , Nitrofurazona/análisis , Nitrofurazona/química , Técnicas Electroquímicas/métodos , Nanotubos de Carbono/química , Nanopartículas del Metal/química , Antibacterianos/análisis , Límite de Detección , Plata/química , Electrodos , Puntos Cuánticos/química
10.
Talanta ; 277: 126406, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901193

RESUMEN

An electrochemical free chlorine sensor was developed by modifying a lab-made screen-printed carbon electrode (SPCE) with gold nanoparticles synthesized with polyvinylpyrrolidone (AuNPs-PVP). The electrode was made by screen printing carbon ink on a waste digital versatile disc (SPC-wDVD). PVP was used to stabilize AuNPs. Scanning electron microscopy showed that AuNPs aggregated without the stabilizer. The electrochemical behavior of the SPC-wDVD was evaluated by comparison with commercial SPCEs from two companies. Electrochemical characterization involved cyclic voltammetry and electrochemical impedance spectroscopy. The detection of free chlorine in water samples was continuous, facilitated by a flow-injection system. In the best condition, the developed sensor exhibited linearity from 0.25 to 3.0 and 3.0 to 500 mg L-1. The limit of detection was 0.1 mg L-1. The stability of the sensor enabled the detection of free chlorine at least 475 times with an RSD of 3.2 %. The AuNPs-PVP/SPC-wDVD was able to detect free chlorine in drinking water, tap water and swimming pool water. The agreement between the results obtained with the proposed method and the standard spectrophotometric method confirmed the precision of the developed sensor.

11.
Mikrochim Acta ; 191(7): 408, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898321

RESUMEN

The introduced work represents an implementation of the automatic benchtop electrochemical station (BES) as an effective tool for the possibilities of high-throughput preparation of modified sensor/biosensors, speeding up the development of the analytical method, and automation of the analytical procedure for the determination of paracetamol (PAR) and dopamine (DOP) as target analytes. Within the preparation of gold nanoparticles modified screen-printed carbon electrode (AuNPs-SPCE) by electrodeposition, the deposition potential EDEP, the deposition time tDEP, and the concentration of HAuCl4 were optimized and their influence was monitored on 1 mM [Ru(NH3)6]3+/2+ redox probe and 50 µM DOP. The morphology of the AuNPs-SPCE prepared at various modification conditions was observed by SEM. The analytical performance of the AuNPs-SPCE prepared at different modification conditions was evaluated by a construction of the calibration curves of DOP and PAR. SPCE and AuNPs-SPCE at modification condition providing the best sensitivity to PAR and DOP, were successfully used to determine PAR and DOP in tap water by "spike-recovery" approach. The BES yields better reproducibility of the preparation of AuNPs-SPCE (RSD = 3.0%) in comparison with the case when AuNPs-SPCE was prepared manually by highly skilled laboratory operator (RSD = 7.0%).


Asunto(s)
Acetaminofén , Dopamina , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Acetaminofén/análisis , Dopamina/análisis , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Electrodos , Técnicas Biosensibles/métodos , Límite de Detección , Carbono/química
12.
Mikrochim Acta ; 191(7): 413, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904692

RESUMEN

Hepatocellular carcinoma (HCC) is the most common liver malignancy and is characterized by increasing incidence and high mortality rates. Current methods for the screening and diagnosis of HCC exhibit inherent limitations, highlighting the ever-growing need for the development of new methods for the early diagnosis of HCC. The aim of this work was to develop a novel electrochemical aptasensor for the detection of HepG2 cells, a type of circulating tumor cells that can be used as biomarkers for the early detection of HCC. A carbon screen-printed electrode was functionalized with a composite suspension containing graphene oxide, chitosan, and polyaniline nanoparticles to increase the electrode surface and provide anchoring sites for the HepG2 cell-specific aptamer. The aptamer was immobilized on the surface of the functionalized electrode using multipulse amperometry, an innovative technique that significantly reduces the time required for aptamer immobilization. The innovative platform was successfully employed for the first time for the amplification-free detection of HepG2 cells in a linear range from 10 to 200,000 cells/mL, with a limit of detection of 10 cells/mL. The platform demonstrated high selectivity and stability and was successfully used for the detection of HepG2 cells in spiked human serum samples with excellent recoveries.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Carcinoma Hepatocelular , Técnicas Electroquímicas , Grafito , Neoplasias Hepáticas , Humanos , Células Hep G2 , Aptámeros de Nucleótidos/química , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangre , Técnicas Electroquímicas/métodos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangre , Grafito/química , Técnicas Biosensibles/métodos , Límite de Detección , Compuestos de Anilina/química , Electrodos , Quitosano/química
13.
Mikrochim Acta ; 191(7): 370, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837084

RESUMEN

The development of an ultrasensitive and precise measurement of a breast cancer biomarker (cancer antigen 15-3; CA15-3) in complex human serum is essential for the early diagnosis of cancer in groups of healthy populations and the treatment of patients. However, currently available testing technologies suffer from insufficient sensitivity toward CA15-3, which severely limits early large-scale screening of breast cancer patients. We report a versatile electrochemical immunoassay method based on atomically cobalt-dispersed nitrogen-doped carbon (Co-NC)-modified disposable screen-printed carbon electrode (SPCE) with alkaline phosphatase (ALP) and its metabolite, ascorbic acid 2-phosphate (AAP), as the electrochemical labeling and redox signaling unit for sensitive detection of low-abundance CA15-3. During electrochemical detection by differential pulse voltammetry (DPV), it was found that the Co-NC-SPCE electrode did not have a current signal response to the AAP substrate; however, it had an extremely favorable response current to ascorbic acid (AA). Based on the above principle, the target CA15-3-triggered immunoassay enriched ALP-catalyzed AAP produces a large amount of AA, resulting in a significant change in the system current signal, thereby realizing the highly sensitive detection of CA15-3. Under the optimal AAP substrate concentration and ALP catalysis time, the Co-NC-SPCE-based electrochemical immunoassay demonstrated a good DPV current for CA15-3 in the assay interval of 1.0 mU/mL to 10,000 mU/mL, with a calculated limit of detection of 0.38 mU/mL. Since Co-NC-SPCE has an excellent DPV current response to AA and employs split-type scheme, the constructed electrochemical immunoassay has the merits of high preciseness and anti-interference, and its clinical diagnostic results are comparable to those of commercial kits.


Asunto(s)
Ácido Ascórbico , Biomarcadores de Tumor , Neoplasias de la Mama , Carbono , Cobalto , Técnicas Electroquímicas , Mucina-1 , Nitrógeno , Humanos , Inmunoensayo/métodos , Neoplasias de la Mama/sangre , Mucina-1/sangre , Biomarcadores de Tumor/sangre , Técnicas Electroquímicas/métodos , Carbono/química , Nitrógeno/química , Cobalto/química , Ácido Ascórbico/química , Ácido Ascórbico/sangre , Ácido Ascórbico/análogos & derivados , Femenino , Límite de Detección , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/química , Electrodos , Técnicas Biosensibles/métodos
14.
ACS Sens ; 9(6): 3066-3074, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38877998

RESUMEN

Point-of-care testing (POCT) devices play a crucial role as tools for disease diagnostics, and the integration of biorecognition elements with electronic components into these devices widens their functionalities and facilitates the development of complex quantitative assays. Unfortunately, biosensors that exploit large conventional IgG antibodies to capture relevant biomarkers are often limited in terms of sensitivity, selectivity, and storage stability, considerably restricting the use of POCT in real-world applications. Therefore, we used nanobodies as they are more suitable for fabricating electrochemical biosensors with near-field communication (NFC) technology. Moreover, a flow-through microfluidic device was implemented in this system for the detection of C-reactive protein (CRP), an inflammation biomarker, and a model analyte. The resulting sensors not only have high sensitivity and portability but also retain automated sequential flow properties through capillary transport without the need for an external pump. We also compared the accuracy of CRP quantitative analyses between commercial PalmSens4 and NFC-based potentiostats. Furthermore, the sensor reliability was evaluated using three biological samples (artificial serum, plasma, and whole blood without any pretreatment). This platform will streamline the development of POCT devices by combining operational simplicity, low cost, fast analysis, and portability.


Asunto(s)
Técnicas Biosensibles , Proteína C-Reactiva , Técnicas Electroquímicas , Dispositivos Laboratorio en un Chip , Anticuerpos de Dominio Único , Teléfono Inteligente , Proteína C-Reactiva/análisis , Proteína C-Reactiva/inmunología , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Técnicas Analíticas Microfluídicas/instrumentación
15.
ACS Appl Bio Mater ; 7(7): 4702-4709, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38910532

RESUMEN

A label-free electrochemical immunosensor was developed for the rapid and sensitive detection of neuron-specific enolase (NSE). The electropolymerization of dopamine in conjunction with highly conductive carbon nanotubes offers a simple and quick platform for the direct anchoring of antibodies without the assistance of any coupling agent as well as a blocking agent. The developed immunosensor exhibited a wider detection range from 120 pM (9 ng mL-1) to 3 nM (200 ng mL-1) for NSE with a high sensitivity of 3.9 µA pM-1 cm-2 in 0.1 M phosphate-buffered saline (PBS) at physiological pH (7.4). Moreover, the short recognition time (15 min) for the antigen enabled the detection to be fast and less invasive. Additionally, the evaluation of a rate constant at various concentrations of NSE via feedback mode of scanning electrochemical microscopy (SECM) explained the profound effect of antigen concentration on the rate of flow of electrons. Therefore, the proposed immunosensor can be a promising tool for the early detection of small cell lung cancer in a very short period of time with consistent accuracy.


Asunto(s)
Materiales Biocompatibles , Técnicas Biosensibles , Indoles , Nanotubos de Carbono , Fosfopiruvato Hidratasa , Polímeros , Nanotubos de Carbono/química , Fosfopiruvato Hidratasa/inmunología , Fosfopiruvato Hidratasa/metabolismo , Fosfopiruvato Hidratasa/análisis , Polímeros/química , Indoles/química , Humanos , Inmunoensayo/métodos , Materiales Biocompatibles/química , Ensayo de Materiales , Tamaño de la Partícula , Técnicas Electroquímicas
16.
Mikrochim Acta ; 191(6): 340, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787447

RESUMEN

A new sandwich-type electrochemical biosensing platform was developed by gold @polyphthalenediamine nanohybrids (AuNP@PoPD) as the sensing platform and phosphorus doped reduced graphene oxide-hemin-palladium nanoparticles (PrGO-Hemin-PdNP) as the signal amplifier for phosphatidylinositol proteoglycan 3 (GPC3). AuNP@PoPD, co-electrodeposited into the screen printed electrode with high conductivity and stability, is dedicated to assembling the primary GPC3 aptamer (GPC3Apt). The second GPC3Apt immobilized on the high conductivity and large surface area of PrGO-Hemin-PdNP was utilized as an electrochemical signal reporter by hemin oxidation (PrGO-Hemin-PdNP-GPC3Apt). In the range 0.001-10.0 ng/mL, the hemin oxidation current signal of the electrochemical aptasensor increased log-linearly with the concentration of GPC3, the lowest detection limit was 0.13 pg/mL, and the sensitivity was 2.073 µA/µM/cm2. The aptasensor exhibited good sensing performance in a human serum sample with the relative error of 4.31-8.07%. The sandwich sensor showed good selectivity and stability for detection GPC3 in human serum samples, providing a new efficient and sensitive method for detecting HCC markers.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Glipicanos , Oro , Grafito , Hemina , Límite de Detección , Nanopartículas del Metal , Paladio , Glipicanos/sangre , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Aptámeros de Nucleótidos/química , Hemina/química , Grafito/química , Paladio/química , Oro/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Electrodos
17.
Mikrochim Acta ; 191(6): 313, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717608

RESUMEN

Copper levels in biological fluids are associated with Wilson's, Alzheimer's, Menke's, and Parkinson's diseases, making them good biochemical markers for these diseases. This study introduces a miniaturized screen-printed electrode (SPE) for the potentiometric determination of copper(II) in some biological fluids. Manganese(III) oxide nanoparticles (Mn2O3-NPs), dispersed in Nafion, are drop-casted onto a graphite/PET substrate, serving as the ion-to-electron transducer material. The solid-contact material is then covered by a selective polyvinyl chloride (PVC) membrane incorporated with 18-crown-6 as a neutral ion carrier for the selective determination of copper(II) ions. The proposed electrode exhibits a Nernstian response with a slope of 30.2 ± 0.3 mV/decade (R2 = 0.999) over the linear concentration range 5.2 × 10-9 - 6.2 × 10-3 mol/l and a detection limit of 1.1 × 10-9 mol/l (69.9 ng/l). Short-term potential stability is evaluated using constant current chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). A significant improvement in the electrode capacitance (91.5 µF) is displayed due to the use of Mn2O3-NPs as a solid contact. The presence of Nafion, with its high hydrophobicity properties, eliminates the formation of the thin water layer, facilitating the ion-to-electron transduction between the sensing membrane and the conducting substrate. Additionally, it enhances the adhesion of the polymeric sensing membrane to the solid-contact material, preventing membrane delamination and increasing the electrode's lifespan. The high selectivity, sensitivity, and potential stability of the proposed miniaturized electrode suggests its use for the determination of copper(II) ions in human blood serum and milk samples. The results obtained agree fairly well with data obtained by flameless atomic absorption spectrometry.


Asunto(s)
Cobre , Éteres Corona , Electrodos , Polímeros de Fluorocarbono , Límite de Detección , Compuestos de Manganeso , Óxidos , Potenciometría , Cobre/química , Polímeros de Fluorocarbono/química , Óxidos/química , Compuestos de Manganeso/química , Humanos , Potenciometría/instrumentación , Potenciometría/métodos , Éteres Corona/química , Grafito/química
18.
Food Chem ; 453: 139701, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781907

RESUMEN

The current study offers the nanomolar quantification of gallic acid (GAL) based on gold nanoparticles (AuNps) and kaolinite minerals (KNT) modified on a screen-printed electrode (SPE). The electrochemical behavior of GAL was performed using differential pulse voltammetry (DPV) in Britton Robinson (BR) buffer solution at pH 2.0 as a supporting electrolyte. Under the optimized DPV mode parameters, the oxidation peak current of GAL (at 0.72 V vs Ag/AgCl) increased linearly in the range between 0.002 µmolL-1 and 40.0 µmolL-1 with a detection limit of 0.50 nmolL-1. The effect of common interfering agents was also investigated. Finally, the applicability of the proposed method was verified by quantification analysis of GAL in black tea and pomegranate juice samples.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Ácido Gálico , Oro , Caolín , Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Ácido Gálico/análisis , Ácido Gálico/química , Caolín/química , Técnicas Electroquímicas/instrumentación , Límite de Detección , Granada (Fruta)/química , Té/química , Minerales/análisis , Minerales/química , Jugos de Frutas y Vegetales/análisis , Camellia sinensis/química , Contaminación de Alimentos/análisis
19.
Bioelectrochemistry ; 158: 108722, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38697015

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis is the need of the hour, as cases are persistently increasing, and new variants are constantly emerging. The ever-changing nature of the virus leading to multiple variants, has brought an imminent need for early, accurate and rapid detection methods. Herein, we have reported the design and fabrication of Screen-Printed Electrodes (SPEs) with graphene oxide (GO) as working electrode and modified with specific antibodies for SARS-CoV-2 Receptor Binding Domain (RBD). Flexibility of design, and portable nature has made SPEs the superior choice for electrochemical analysis. The developed immunosensor can detect RBD as low as 0.83 fM with long-term storage capacity. The fabricated SPEs immunosensor was tested using a miniaturized portable device and potentiostat on 100 patient nasopharyngeal samples and corroborated with RT-PCR data, displayed 94 % sensitivity. Additionally, the in-house developed polyclonal antibodies detected RBD antigen of the mutated Omicron variant of SARS-CoV-2 successfully. We have not observed any cross-reactivity/binding of the fabricated immunosensor with MERS (cross-reactive antigen) and Influenza A H1N1 (antigen sharing common symptoms). Hence, the developed SPEs sensor may be applied for bedside point-of-care diagnosis of SARS-CoV-2 using miniaturized portable device, in clinical samples.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Electrodos , Grafito , SARS-CoV-2 , Grafito/química , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Humanos , COVID-19/diagnóstico , COVID-19/virología , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Límite de Detección
20.
Artículo en Inglés | MEDLINE | ID: mdl-38598095

RESUMEN

Ochratoxin A (OTA) is a toxic fungal metabolite that is commonly found in cereals and animal feed. It is economically damaging and potentially hazardous to human health. Herein, we propose an electrochemical immunosensor for the rapid detection of OTA using anti-OTA antibodies and diazonium-functionalized, screen-printed electrodes. We attached 4-aminobenzoic acid to an electrode surface, activated the carboxyl groups on the surface with carbodiimide, and attached an antibody to the diazo layer. Subsequently, we used bovine serum protein as a blocker to prevent non-specific antigens from binding to the antibody. We evaluated the performance of the sensor by cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. The sensor is highly specific and sensitive, has good linear responses in the range 20-200 ng/mL, a limit of detection of 0.5 ng/mL, and good recoveries of 90.5%-100.9% in spiked samples. It can be stored at 4 °C for approximately 2 weeks, and is highly stable, with a current response variation of no more than 4.6%.


Asunto(s)
Técnicas Electroquímicas , Contaminación de Alimentos , Ocratoxinas , Ocratoxinas/análisis , Contaminación de Alimentos/análisis , Electrodos , Inmunoensayo/métodos , Análisis de los Alimentos , Compuestos de Diazonio/química , Técnicas Biosensibles , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA