Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 24(12): e14150, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37731203

RESUMEN

PURPOSE: To evaluate the performance of an electromagnetic (EM)-tracked scintillation dosimeter in detecting source positional errors of IVD in HDR brachytherapy treatment. MATERIALS AND METHODS: Two different scintillator dosimeter prototypes were coupled to 5 degrees-of-freedom (DOF) EM sensors read by an Aurora V3 system. The scintillators used were a 0.3 × 0.4 × 0.4 mm3 ZnSe:O and a BCF-60 plastic scintillator of 0.5 mm diameter and 2.0 mm in length (Saint-Gobain Crystals). The sensors were placed at the dosimeter's tip at 20.0 mm from the scintillator. The EM sampling rate was 40/s while the scintillator signal was sampled at 100 000/s using two photomultiplier tubes from Hamamatsu (series H10722) connected to a data acquisition board. A high-pass filter and a low-pass filter were used to separate the light signal into two different channels. All measurements were performed with an afterloader unit (Flexitron-Elekta AB, Sweden) in full-scattered (TG43) conditions. EM tracking was further used to provide distance/angle-dependent energy correction for the ZnSe:O inorganic scintillator. For the error detection part, lateral shifts of 0.5 to 3 mm were induced by moving the source away from its planned position. Indexer length (longitudinal) errors between 0.5 to 10 mm were also introduced. The measured dose rate difference was converted to a shift distance, with and without using the positional information from the EM sensor. RESULTS: The inorganic scintillator had both a signal-to-noise-ratio (SNR) and signal-to-background-ratio (SBR) close to 70 times higher than those of the plastic scintillator. The mean absolute difference from the dose measurement to the dose calculated with TG-43U1 was 1.5% ±0.7%. The mean absolute error for BCF-60 detector was 1.7% ± 1.2 % $\pm 1.2\%$ when compared to TG-43 calculations formalism. With the inorganic scintillator and EM tracking, a maximum area under the curve (AUC) gain of 24.0% was obtained for a 0.5-mm lateral shift when using the EMT data with the ZnSe:O. Lower AUC gains were obtained for a 3-mm lateral shifts with both scintillators. For the plastic scintillator, the highest gain from using EM tracking information occurred for a 0.5-mm lateral shift at 20 mm from the source. The maximal gain (17.4%) for longitudinal errors was found at the smallest shifts (0.5 mm). CONCLUSIONS: This work demonstrates that integrating EM tracking to in vivo scintillation dosimeters enables the detection of smaller shifts, by decreasing the dosimeter positioning uncertainty. It also serves to perform position-dependent energy correction for the inorganic scintillator,providing better SNR and SBR, allowing detection of errors at greater distances from the source.


Asunto(s)
Braquiterapia , Dosimetría in Vivo , Humanos , Conteo por Cintilación , Dosímetros de Radiación , Fenómenos Electromagnéticos , Radiometría , Dosificación Radioterapéutica
2.
Med Phys ; 49(3): 1944-1954, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35050516

RESUMEN

PURPOSE: Scintillation detectors were 3D printed based on a gamma knife (GK) dose distribution to calculate the volume averaging effect. The collimator output factors were measured using isodose-shaped scintillators (ISSs) and compared with those of a micro-diamond detector and previous reports. METHODS: An absorbed dose distribution in a spherical dosimetry phantom with a radius of 8 cm was obtained from GK treatment planning software (Leksell GammaPlan [LGP], Elekta AB, Stockholm, Sweden). Two types of ISSs were fabricated to fit the 97.2% (ISS-1) and 95.6% (ISS-2) isodose surfaces. The volume averaging correction factors were obtained by dividing the absorbed dose to water in the central voxel (CV) by that in the ISS. The correction effect due to the difference between the ISS and water was calculated by Monte Carlo simulations. Ten ISS detectors, five of each type, were used to measure the output factors of the 4- and 8-mm collimators of a GK Icon to assess system consistency. The output factors of seven GKs were measured using two ISS detectors, one of each type, and a PTW T60019 (PTW, Freiburg, Germany) micro-diamond detector. RESULTS: The detector output ratios (DORs) measured using the five ISSs of each type were consistent, with standard uncertainties less than 0.2%. In the 4-mm field, the volume averaging correction factor ratios were 1.018 and 1.026, and the output factors after all corrections were 0.827 (0.006) and 0.825 (0.006) for ISS-1 and ISS-2, respectively. In the 8-mm field, the volume averaging correction factor ratios were 1.000 for both ISS types, and the output factors were 0.898 (0.003) and 0.900 (0.003) for ISS-1 and ISS-2, respectively. The ISS detectors could measure the output factors of a GK with uncertainties comparable to that of the PTW 60019 detector. The output factors of all detectors decreased with the dose rate. CONCLUSION: The volume averaging effect of an ISS developed in-house could be calculated using known dose distributions. The collimator output factors of the GK Perfexion/Icon models measured using ISS detectors were consistent with those of a commercial synthetic micro-diamond detector and recent studies.


Asunto(s)
Radiocirugia , Estudios de Factibilidad , Método de Montecarlo , Fantasmas de Imagen , Radiometría
3.
Med Phys ; 48(10): 5639-5650, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34389992

RESUMEN

PURPOSE: To test the measurement technique of the three-dimensional (3D) dose distribution measured image by capturing the scintillation light generated using a plastic scintillator and a scintillating screen. METHODS: Our imaging system constituted a column shaped plastic scintillator covered by a Gd2 O2 S:Tb scintillating screen, a conical mirror and a cooled CCD camera. The scintillator was irradiated with 6 MV photon beams. Meanwhile, the irradiated plan was prepared for the static field plans, two-field plan (2F plan) and the conformal arc plan (CA plan). The 2F plan contained 16 mm2 and 10 mm2 fields irradiated from gantry angles of 0° and 25°, respectively. The gantry was rotated counterclockwise from 45° to 315° for the CA plan. The field size was then obtained as 10 mm2 . A Monte Carlo simulation was performed in the experimental geometry to obtain the calculated 3D dose distribution as the reference data. Dose response was acquired by comparing between the reference and the measurement. The dose rate dependence was verified by irradiating the same MU value at different dose rates ranging from 100 to 600 MU/min. Deconvolution processing was applied to the measured images for the correction of light blurring. The measured 3D dose distribution was reconstructed from each measured image. Gamma analysis was performed to these 3D dose distributions. The gamma criteria were 3% for the dose difference, 2 mm for the distance-to-agreement and 10% for the threshold. RESULTS: Dose response for the scintillation light was linear. The variation in the light intensity for the dose rate ranging from 100 to 600 MU/min was less than 0.5%, while our system presents dose rate independence. For the 3D dose measurement, blurring of light through deconvolution processing worked well. The 3D gamma passing rate (3D GPR) for the 10 × 10 mm2 , 16 × 16 mm2 , and 20 × 20 mm2 fields were observed to be 99.3%, 98.8%, and 97.8%, respectively. Reproducibility of measurement was verified. The 3D GPR results for the 2F plan and the CA plan were 99.7% and 100%, respectively. CONCLUSIONS: We developed a plastic scintillation dosimeter and demonstrated that our system concept can act as a suitable technique for measuring the 3D dose distribution from the gamma results. In the future, we will attempt to measure the 4D dose distribution for clinical volumetric modulated arc radiation therapy (VMAT)-SBRTplans.


Asunto(s)
Dosímetros de Radiación , Radioterapia de Intensidad Modulada , Método de Montecarlo , Plásticos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados , Conteo por Cintilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA