Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38890822

RESUMEN

Douchi is a Chinese traditional fermented food with a unique flavor. Methyl anthranilate (MA) plays an important role in formation of this flavor. However, the complicated relationship between the MA formation and the metabolic mechanism of the key functional microorganisms remains unclear. Here, we elucidated the response mechanism of aroma production driven by high salt stress in Trichomonascus ciferrii WLW (T. ciferrii WLW), which originates from the douchi fermentation process. The highest production of MA was obtained in a 10% NaCl environment. The enhanced expression of the key enzyme genes of the pentose phosphate pathway and shikimic acid pathway directed carbon flow toward aromatic amino acid synthesis and helped sustain an increased expression of metK to synthesize a large amount of the methyl donor S-adenosylmethionine, which promoted methyl anthranilate yield. This provides a theoretical basis for in-depth research on the applications of the flavor formation mechanisms of fermented foods.

2.
Heliyon ; 9(3): e14403, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36950655

RESUMEN

The significant horticultural crop, cauliflower (Brassica oleracea L. var. botrytis) is vulnerable to the excessive salt concentration in the soil, which contributes to its scaled-down growth and productivity, among other indices. The current study examines the efficacy of hydropriming, halopriming, and osmopriming on the physio-biochemical attributes and tolerance to salinity (100 mM NaCl) in cauliflower under controlled conditions. The results showed that the salinity (100 mM NaCl) has significant deleterious impacts on cauliflower seed germination, seedling growth, and photosynthetic attributes, and provoked the production of reactive oxygen species. In contrast, different priming approaches proved beneficial in mitigating the negative effects of salinity and boosted the germination, vigor indices, seedling growth, and physio-biochemical attributes like photosynthetic pigments, protein, and proline content while suppressing oxidative damage and MDA content in cauliflower seedlings in treatment- and dose-dependent manner. PCA revealed 61% (PC1) and 15% (PC2) of the total variance with substantial positive relationships and high loading conditions on all germination attributes on PC1 with greater PC1 scores for PEG treatments showing the increased germination indices in PEG-treated seeds among all the priming treatments tested. All 13 distinct priming treatments tried clustered into three groups as per Ward's approach of systematic categorization, clustering the third group showing relatively poor germination performances. Most germination traits exhibited statistically significant associations at the p < 0.01 level. Overall, the results established the usefulness of the different priming approaches facilitating better germination, survival, and resistance against salinity in the cauliflower to be used further before sowing in the salt-affected agro-ecosystems.

3.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35574987

RESUMEN

Owing to its detrimental effect on plant growth, salinity is an increasing worldwide problem for agriculture. To understand the molecular mechanisms activated in response to salt in Arabidopsis thaliana, we investigated the Catharanthus roseus receptor-like kinase 1-like family, which contains sensors that were previously shown to be involved in sensing the structural integrity of the cell walls. We found that herk1 the1-4 double mutants, lacking the function of HERKULES1 (HERK1) and combined with a gain-of-function allele of THESEUS1 (THE1), strongly respond to salt application, resulting in an intense activation of stress responses, similarly to plants lacking FERONIA (FER) function. We report that salt triggers pectin methyl esterase (PME) activation and show its requirement for the activation of several salt-dependent responses. Because chemical inhibition of PMEs alleviates these salt-induced responses, we hypothesize a model in which salt directly leads to cell wall modifications through the activation of PMEs. Responses to salt partly require the functionality of FER alone or HERK1/THE1 to attenuate salt effects, highlighting the complexity of the salt-sensing mechanisms that rely on cell wall integrity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Pectinas , Salinidad
4.
Ecol Evol ; 11(20): 14231-14249, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34707851

RESUMEN

As an essential micronutrient for many organisms, sodium plays an important role in ecological and evolutionary dynamics. Although plants mediate trophic fluxes of sodium, from substrates to higher trophic levels, relatively little comparative research has been published about plant growth and sodium accumulation in response to variation in substrate sodium. Accordingly, we carried out a systematic review of plants' responses to variation in substrate sodium concentrations.We compared biomass and tissue-sodium accumulation among 107 cultivars or populations (67 species in 20 plant families), broadly expanding beyond the agricultural and model taxa for which several generalizations previously had been made. We hypothesized a priori response models for each population's growth and sodium accumulation as a function of increasing substrate NaCl and used Bayesian Information Criterion to choose the best model. Additionally, using a phylogenetic signal analysis, we tested for phylogenetic patterning of responses across taxa.The influence of substrate sodium on growth differed across taxa, with most populations experiencing detrimental effects at high concentrations. Irrespective of growth responses, tissue sodium concentrations for most taxa increased as sodium concentration in the substrate increased. We found no strong associations between the type of growth response and the type of sodium accumulation response across taxa. Although experiments often fail to test plants across a sufficiently broad range of substrate salinities, non-crop species tended toward higher sodium tolerance than domesticated species. Moreover, some phylogenetic conservatism was apparent, in that evolutionary history helped predict the distribution of total-plant growth responses across the phylogeny, but not sodium accumulation responses.Our study reveals that saltier plants in saltier soils proves to be a broadly general pattern for sodium across plant taxa. Regardless of growth responses, sodium accumulation mostly followed an increasing trend as substrate sodium levels increased.

5.
Plant J ; 105(3): 771-785, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33160290

RESUMEN

Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca2+ /CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a-1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.


Asunto(s)
Glycine max/fisiología , Proteínas de Plantas/metabolismo , Proteínas SNARE/metabolismo , Estrés Salino/fisiología , Arabidopsis/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Membrana Celular/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Proteínas SNARE/genética
6.
J Plant Physiol ; 242: 153018, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31472447

RESUMEN

Intracellular vesicular trafficking ensures the exchange of lipids and proteins between the membranous compartments. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) play a central role in membrane fusion and they are key factors for vesicular trafficking in plants, including crops economically important such as tomato (Solanum lycopersicum). Taking advantage of the complete genome sequence available of S. lycopersicum, we identified 63 genes that encode putative SNARE proteins. Then, phylogenetic analysis allowed the classification of SNAREs in five main groups and recognizing their possible functions. A structure analysis of the genes, their syntenic relationships and their location in the chromosomes were also carried out for their characterization. In addition, the expression profiles of SNARE genes in different tissues were investigated using microarray-based analysis. The results indicated that specific SNAREs had a higher induction in leaf, root, flower and mature green fruit. S. lycopersicum is characterized for being a crop sensitive to saline stress unlike its wild relatives, such as Solanum pennellii, Solanum pimpinellifolium, Solanum habrochaites or Solanum chilense, which are tolerant. In this context, we analyzed different microarrays and evaluated and validated the transcript levels through qRT-PCR experiments. The results showed that SlGOS12.2, SlVAMP727 and SlSYP51.2 could have a positive relationship with salt stress and probably an important role in their tolerance. All these data increase our knowledge and can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in tomato.


Asunto(s)
Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Estrés Salino/genética , Solanum lycopersicum/genética , Secuencias de Aminoácidos/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Solanum lycopersicum/crecimiento & desarrollo , Fusión de Membrana/genética , Filogenia , Estrés Salino/fisiología
7.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30373210

RESUMEN

Salinity is one of the most important abiotic stresses threatening plant growth and agricultural productivity worldwide. In green alga Chlamydomonas reinhardtii, physiological evidence indicates that saline stress increases intracellular peroxide levels and inhibits photosynthetic-electron flow. However, understanding the genetic underpinnings of salt-responding traits in plantae remains a daunting challenge. In this study, the transcriptome analysis of short-term acclimation to salt stress (200 mM NaCl for 24 h) was performed in C. reinhardtii. A total of 10,635 unigenes were identified as being differently expressed by RNA-seq, including 5920 up- and 4715 down-regulated unigenes. A series of molecular cues were screened for salt stress response, including maintaining the lipid homeostasis by regulating phosphatidic acid, acetate being used as an alternative source of energy for solving impairment of photosynthesis, and enhancement of glycolysis metabolism to decrease the carbohydrate accumulation in cells. Our results may help understand the molecular and genetic underpinnings of salt stress responses in green alga C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino , Transcriptoma , Chlamydomonas reinhardtii/fisiología , Perfilación de la Expresión Génica , Fotosíntesis , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA