Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175610, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39163936

RESUMEN

This study investigated the effects of combining Phragmites australis-based biochar, prepared at 400 °C, with various types of phosphate fertilizers-soluble, insoluble, and organic-on the content and transformation of phosphorus fractions in saline-alkali soil. Additionally, we explored microbiological mechanisms driving these transformations. The results showed that this combination significantly increased the concentrations of dicalcium phosphate (Ca2P), octacalcium phosphate (Ca8P), aluminum phosphate (AlP), moderately labile organic phosphorus (MLOP), and resistant organic phosphorus (MROP) in soil. Conversely, the levels of hydroxyapatite (Ca10P) and highly resistant organic phosphorus (HROP) decreased. The increase in labile organic phosphorus (LOP) content or decrease in iron phosphate (FeP) was found to effectively enhance the availability of Olsen phosphorus (Olsen-P) in soil. Furthermore, the study revealed that biochar mixed with organic phosphate fertilizers increased the activity of soil acid phosphatase (ACP) and neutral phosphatase (NEP), while reducing alkaline phosphatase (ALP) activity. In contrast, biochar combined with soluble and insoluble phosphate fertilizers decreased the activity of ACP (22.59 % and 28.57 %, respectively) and NEP (62.50 % and 11.11 %, respectively), with the combination with insoluble fertilizers also reducing ALP activity by 55.84 %, whereas the soluble combination increased it by 190.34 %. Additionally, the co-application of biochar and phosphate fertilizers altered the composition and abundance of the gene phoD-harboring microbial community, enhancing the abundance of Proteobacteria and reducing that of Actinobacteria. Correlation analysis between phoD-functional microbial species and various phosphorus fractions showed that Rhodopseudomonas was significantly associated with several phosphorus components, exhibiting a positive correlation with Ca2P, Ca8P, AlP, LOP, MLOP, and MROP, but a negative relationship with Ca10P. These findings suggest that the combined application of biochar and phosphate fertilizers could change the abundance of Rhodopseudomonas, potentially influencing phosphorus cycling in the soil. This research provides a strong scientific foundation for the efficient combined use of biochar and phosphate fertilizers in managing saline-alkali soil.


Asunto(s)
Carbón Orgánico , Fertilizantes , Fosfatos , Fósforo , Microbiología del Suelo , Suelo , Fertilizantes/análisis , Carbón Orgánico/química , Fósforo/análisis , Suelo/química , Contaminantes del Suelo/análisis , Álcalis
2.
J Environ Manage ; 368: 122134, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151340

RESUMEN

At present, it is estimated that approximately 800 million hectares of arable land worldwide is saline-alkali soil, which has become one of the major limiting factors restricting global agricultural productivity. Meanwhile, the residual food and excreta of mariculture animals, accompanied by potential eutrophication pollution, remain an unresolved issue due to salinity. In this study, the ameliorative effects of biochar (BC700) prepared from maricultural-solid-waste on the biological properties and physicochemical of saline-alkali soil and Salicornia europaea L growth were investigated. Supplements of 1, 3 and 5% BC700 significantly increased the total nitrogen, available phosphorus, available potassium and organic carbon in soil by 2.00-68.30%, 26.74-64.96%, 7.74-52.53% and 3.43-64.96%, respectively. And BC700 significantly reduced soil pH. This occurred with enhanced soil urease, sucrase and alkaline phosphatase activities and alterations to the bacterial community structure, thus improving P and N cycling and the soil physicochemical properties. In addition, BC700 has weakened the competition between saline soil microorganisms and also changed the key species of microbial networks. Co-utilization of BC700 and S. europaea cultivation could increase the stability of the soil microbial community while the growth of the plant was significantly promoted by 19.8-25.4%. Supplements of 3% BC700 are recommended as an eco-friendly and effective treatment for the recycling of mariculture wastes for the improvement of saline-alkali soils.


Asunto(s)
Carbón Orgánico , Suelo , Residuos Sólidos , Carbón Orgánico/química , Suelo/química , Nitrógeno , Fósforo/análisis , Fósforo/química , Álcalis/química , Microbiología del Suelo , Salinidad
3.
Front Plant Sci ; 15: 1434097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188547

RESUMEN

Soil quality is defined as the ability of soil to maintain the soil environment and the biosphere. Due to the limitation of salt and alkali stress, soil quality can be reduced, which in turn affects agricultural production. Biochar is widely used in saline-alkali land improvement because of its special pore structure and strong ion exchange ability, while Piriformospora indica is widely used in saline-alkali land improvement because it can symbiose with plants and improve plant stress resistance. However, the synergistic effect of combined biochar application and inoculation of P. indica on the quality of saline-alkali soil and plant development is uncertain. Hence, we investigated the combined influences of biochar and P. indica on the soil physicochemical characteristics, as well as the growth and chlorophyll florescence of sorghum-sudangrass hybrids (Sorghum bicolor × Sorghum sudane) in our study. The results indicated that after applying biochar and P. indica together, there was a considerable drop in soil pH, conductivity, Na+, and Cl- concentrations. Meanwhile, the soil organic matter (SOM), available phosphorus (AP), and alkaline hydrolyzable nitrogen (AN) increased by 151.81%, 50.84%, and 103.50%, respectively, when the Bamboo biochar was combined with 120 ml/pot of P. indica. Eventually, sorghum-sudangrass hybrid biomass, transpiration rate, and chlorophyll content increased by 111.69%, 204.98%, and 118.54%, respectively. According to our findings, using P. indica and biochar together can enhance soil quality and plant growth. The results also provide insights to enhance the quality of saline-alkali soils and the role of microorganisms in nutrient cycling.

4.
Microorganisms ; 12(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39203359

RESUMEN

Wheat is a vital global food crop, yet it faces challenges in saline-alkali soils where Fusarium crown rot significantly impacts growth. Variations in wheat growth across regions are often attributed to uneven terrain. To explore these disparities, we examined well-growing and poorly growing wheat samples and their rhizosphere soils. Measurements included wheat height, root length, fresh weight, and Fusarium crown rot severity. Well-growing wheat exhibited greater height, root length, and fresh weight, with a lower Fusarium crown rot disease index compared to poorly growing wheat. Analysis of rhizosphere soil revealed higher alkalinity; lower nutrient levels; and elevated Na, K, and Ca levels in poorly growing wheat compared to well-growing wheat. High-throughput sequencing identified a higher proportion of unique operational taxonomic units (OTUs) in poorly growing wheat, suggesting selection for distinct fungal species under stress. FUNGuild analysis indicated a higher prevalence of pathogenic microbial communities in poorly growing wheat rhizosphere soil. This study underscores how uneven terrains in saline-alkali soils affect pH, nutrient dynamics, mineral content, wheat health, and rhizosphere fungal community structure.

5.
Sci Total Environ ; 949: 175127, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084360

RESUMEN

Salinization is a global problem affecting agricultural productivity and sustainability. The application of exogenous microbial fertilizer harbors great potential for improving saline-alkali soil conditions and increasing land productivity. Yet the responses to microbial fertilizer application rate in terms of rhizosphere soil biochemical characteristics, soil microbial community, and crop yield and their interrelationships and underlying mechanisms are still unclear. Here, we studied changes to rhizosphere soil-related variables, soil enzyme activity (catalase, sucrase, urease), microbial community diversity, and sweet sorghum (Sorghum bicolor (L.) Moench) yield under four fertilization concentration levels (0, 0.12, 0.24, and 0.36 kg m-2) in a saline-alkali ecosystem (Shandong, China). Our results showed that the best improvement effect on soil when the microbial fertilizer was applied at a rate of 0.24 kg m-2. Compared with the control (sweet sorghum + no fertilizer), it significantly increased soil organic carbon (21.50 %), available phosphorus (26.14 %), available potassium (36.30 %), and soil urease (38.46 %), while significantly reducing soil pH (2.21 %) and EC (12.04 %). Meanwhile, the yield of sweet sorghum was increased by 24.19 %. This is mainly because microbial fertilizers enhanced the diversity and the network complexity of bacterial and fungal communities, and influenced catalase (CAT), urease (UE), and sucrase (SC), thereby facilitating nutrient release in the soil, enhancing soil fertility, and indirectly influencing sweet sorghum productivity. Among them, Gemmatimonadota and Verrucomicrobiota may be the key microbial factors affecting sweet sorghum yield, while available potassium, soil urease and available phosphorus are the main soil factors. These findings provide valuable theoretical insights for preserving the health of coastal saline-alkali soils and meeting the agricultural demand for increased yield per unit of land area.


Asunto(s)
Fertilizantes , Microbiología del Suelo , Suelo , Sorghum , Fertilizantes/análisis , Suelo/química , China , Hongos , Salinidad , Productos Agrícolas , Bacterias , Agricultura/métodos , Microbiota , Rizosfera
6.
Front Microbiol ; 15: 1358783, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939186

RESUMEN

Exploring the bacterial community in the S. glauca rhizosphere was of great value for understanding how this species adapted to the saline-alkali environment and for the rational development and use of saline-alkali soils. In this study, high-throughput sequencing technology was used to investigate the diversity characteristics and distribution patterns of soil bacterial communities in the rhizosphere of S.glauca-dominated communities in the Hetao Irrigation Distract, Inner Mongolia, China. The relationships among bacterial characteristics, soil physicochemical properties and vegetation in four sampling sites were analyzed. The soil bacterial communities in the rhizosphere of S. glauca-dominated communities were mainly composed of 16 phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, Deinococcus-Thermus, Verrucomicrobia, Saccharibacteria, Cyanobacteria, Nitrospirae, JL-ETNP-Z39, Parcubacteria and Chlorobi), and these populations accounted for more than 99% of the total bacterial community. At the genus level, the main bacterial communities comprised Halomonas, Nitriliruptor, Euzebya and Pelagibius, which accounted for 15.70% of the total bacterial community. An alpha diversity analysis indicated that the richness and diversity of rhizosphere soil bacteria differed significantly among the sampling sites, and the bacterial richness and diversity indices of severe saline-alkali land were higher than those of light and moderate saline-alkali land. The principal component analysis (PCA) and linear discriminant analysis effect size (LEfSe) showed significant differences in the species composition of the rhizosphere soil bacterial community among different sampling sites. A correlation analysis showed that the number of bacterial species exhibited the highest correlation with the soil water content (SWC). The richness and evenness indices were significantly correlated with the SWC and SO4 2-, K+ and Mg2+ concentrations. The electrical conductivity (EC), soluble ions (Na+, CO3 2- + HCO3 -, K+, Ca2+, Mg2+, and SO4 2+), SWC and vegetation coverage (VC) were the main drivers affecting the changes in its community structure. The bacterial community in the rhizosphere of S. glauca enhanced the adaptability of S. glauca to saline-alkali environment by participating in the cycling process of nutrient elements, the decomposition of organic matter and the production of plant growth regulating substances. These results provided a theoretical reference for further study on the relationship among rhizosphere soil microorganisms and salt tolerance in halophytes.

7.
Sci Total Environ ; 945: 174053, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897464

RESUMEN

Flue gas desulfurization gypsum (FGDG), a solid waste produced during sulfur removal in coal-fired power plants, has applications in saline-alkali soil amelioration due to its function of calcium­sodium ion exchange. Existing research has focused on the use of gypsum to improve saline-alkali soils in non-coastal areas. However, coastal areas are not only extensively salinized, but an important source of methane, and surprisingly, FGDG may assist to decrease methane formation mainly by the action of sulfate radical. This is the first critical review to systematically discuss the effects of FGDG on both saline-alkali soil improvement and carbon emission control in tidal flats, including application status, amendment principles, environmental risks and methane emission control. After adding FGDG, soil salinization degree was weakened via adjusting soil structure, pH, exchangeable sodium percentage and electric conductivity, introduction of nutrients also promotes crop growth. The optimal FGDG dosage in tidal flats seems to be higher (>2 %) than that in non-coastal areas (<1 %). Its environmental risks regarding heavy metals and eutrophication are evaluated safe. In tidal areas, more methane is produced in hot seasons and ebb tides. Plants and invertebrates also promote methane release. FGDG controls methane production by promoting the activity of sulfate-reducing bacteria and inhibiting methanogens. Considering methane flux levels and seawater erosion, FGDG use in low tidal beach needs more research, while that in high and middle tidal beach is recommended. This review will expand applications and appropriate use of FGDG for reducing carbon emission and improving ecological services in coastal areas.

8.
Sci Total Environ ; 942: 173775, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38844238

RESUMEN

The rhizosphere environment of plants, which harbors halophilic bacterial communities, faces significant challenges in coping with environmental stressors, particularly saline soil properties. This study utilizes a high-throughput 16S rRNA gene-based amplicon sequencing to investigate the variations in bacterial community dynamics in rhizosphere soil (RH), root surface soil (RS), root endophytic bacteria (PE) compartments of Suaeda salsa roots, and adjoining soils (CK) across six locations along the eastern coast of China: Nantong (NT), Yancheng (YC), Dalian (DL), Tianjin (TJ), Dongying (DY), and Qingdao (QD), all characterized by chloride-type saline soil. Variations in the physicochemical properties of the RH compartment were also evaluated. The results revealed significant changes in pH, electrical conductivity, total salt content, and ion concentrations in RH samples from different locations. Notably, the NT location exhibited the highest alkalinity and nitrogen availability. The pH variations were linked to HCO3- accumulation in S. salsa roots, while salinity stress influenced soil pH through H+ discharge. Despite salinity stress, enzymatic activities such as catalase and urease were higher in soils from various locations. The diversity and richness of bacterial communities were higher in specific locations, with Proteobacteria dominating PE samples from the DL location. Additionally, Vibrio and Marinobacter were prevalent in RH samples. Significant correlations were found between soil pH, salinity, nutrient content, and the abundance and diversity of bacterial taxa in RH samples. Bioinformatics analysis revealed the prevalence of halophilic bacteria, such as Bacillus, Halomonas, and Streptomyces, with diverse metabolic functions, including amino acid and carbohydrate metabolisms. Essential genes, such as auxin response factor (ARF) and GTPase-encoding genes, were abundant in RH samples, suggesting adaptive strategies for harsh environments. Likewise, proline/betaine transport protein genes were enriched, indicating potential bioremediation mechanisms against high salt stress. These findings provide insight into the metabolic adaptations facilitating resilience in saline ecosystems and contribute to understanding the complex interplay between soil conditions, bacterial communities, and plant adaptation.


Asunto(s)
Bacterias , Chenopodiaceae , Raíces de Plantas , ARN Ribosómico 16S , Microbiología del Suelo , China , Chenopodiaceae/microbiología , Raíces de Plantas/microbiología , Bacterias/clasificación , Bacterias/genética , Rizosfera , Suelo/química , Salinidad , Microbiota , Secuenciación de Nucleótidos de Alto Rendimiento
9.
Sci Total Environ ; 946: 174338, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38944306

RESUMEN

Promoting soil carbon sequestration is a possible way to mitigate global warming. To investigate the effects of exogenous calcium on soil carbon sequestration during the application of organic matter to improve coastal saline-alkali soil. In this study, a 30-day incubation experiment was based on the application of corn straw biochar + chicken manure (BM) and rice straw + chicken manure (SM). Usages of exogenous calcium in each treatment under each organic matter combination as follow: CK (No exogenous calcium), CaSi1 (1.24 g CaSiO3, i.e. 4.28 g Ca kg-1 soil), CaSi2 (2.48 g CaSiO3, i.e. 8.56 g Ca kg-1 soil), CaOH1 (0.79 g Ca(OH)2, i.e. 4.28 g Ca kg-1 soil), CaOH2 (1.58 g Ca(OH)2, i.e. 8.56 g Ca kg-1 soil), CaSiOH (1.24 g CaSiO3 + 0.79 g Ca(OH)2, i.e. 8.56 g Ca kg-1 soil). Results showed that exogenous calcium significantly reduced CO2 emission. Organic matter addition promoted the loss of SOC, and exogenous did not significantly affect the mineralization of SOC albeit strongly increased SIC, making up for the loss of SOC, increasing soil total carbon and realizing soil carbon fixation. Soil carbon fixation was mainly realized by the reaction of exogenous calcium with CO2 generated by mineralization and converting it into calcium carbonate. pH and soil CO2 emission are the major controlling factors for soil inorganic carbon sequestration. Therefore, applying organic matter with exogenous calcium can realize soil carbon fixation by generation of calcium carbonate.

10.
Front Microbiol ; 15: 1359698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706969

RESUMEN

Soil salinization is a global constraint that significantly hampers agricultural production, with cotton being an important cash crop that is not immune to its detrimental effects. The rhizosphere microbiome plays a critical role in plant health and growth, which assists plants in resisting adverse abiotic stresses including soil salinization. This study explores the impact of soil salinization on cotton, including its effects on growth, yield, soil physical and chemical properties, as well as soil bacterial community structures. The results of ß-diversity analysis showed that there were significant differences in bacterial communities in saline-alkali soil at different growth stages of cotton. Besides, the more severity of soil salinization, the more abundance of Proteobacteria, Bacteroidota enriched in rhizosphere bacterial composition where the abundance of Acidobacteriota exhibited the opposite trend. And the co-occurrence network analysis showed that soil salinization affected the complexity of soil bacterial co-occurrence network. These findings provide valuable insights into the mechanisms by which soil salinization affects soil microorganisms in cotton rhizosphere soil and offer guidance for improving soil salinization using beneficial microorganisms.

11.
Front Plant Sci ; 15: 1377626, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799103

RESUMEN

Introduction: Phosphorus (P) fertilizer is critical to maintain a high yield and quality of alfalfa (Medicago sativa L.). There are several fertilizer types and soil types in China, and the application of a single type of P fertilizer may not be suitable for present-day alfalfa production. Methods: In order to select the optimal combination of alfalfa and soil type and fertilizer type for improving P utilization efficiency. We conducted a greenhouse pot experiment, calcium superphosphate (SSP), diammonium phosphate (DAP), ammonium polyphosphate (APP), potassium dihydrogen phosphate (KP), and no-fertilizer control treatments were applied to alfalfa in sandy and saline-alkali soils. The response of alfalfa root morphology and rhizosphere processes to different P fertilizers was investigated. Results and discussion: The results showed that shoot biomass of alfalfa was slightly higher in sandy soil than in saline-alkali soil. Shoot biomass of alfalfa increased by 223%-354% in sandy soil under P treatments compared with the control, and total root length increased significantly by 74% and 53% in DAP and SSP treatments, respectively. In saline-alkali soil, alfalfa shoot biomass was significantly increased by 229% and 275% in KP and DAP treatments, and total root length was increased by 109% only in DAP treatment. Net P uptake of alfalfa in DAP treatment was the highest in both soils, which were 0.73 and 0.54 mg plant-1, respectively. Alfalfa shoot P concentration was significantly positively correlated with shoot and root biomass (P < 0.05, 0.01 or 0.001) whereas negatively correlated with acid phosphatase concentration (P < 0.05). Improvement of plant growth and P uptake induced by P fertilizer application was greater in sandy soil than in saline-alkali soil. DAP and KP was the most efficient P fertilizers in both sandy soil and saline-alkali soil.

12.
Waste Manag ; 180: 135-148, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564914

RESUMEN

Short-term high-temperature pretreatment can effectively shorten the maturity period of organic waste composting and improve the fertilizer efficiency and humification degree of products. To investigate the effect and mechanism of the end products on the saline-alkali soil improvement and plant growth, the short-term high-temperature pretreatment composting (SHC) and traditional composting (STC) were separately blended with saline-alkali soil in a ratio of 0-40 % to establish a soil-fertilizer blended matrix for cultivating Lolium perenne L. The pot experiments combined with principal component analysis showed Lolium perenne L. planted in 20 % SHC-blended saline-alkali soil had the best growth effect, and its biomass, chlorophyll content, and plant height were 109-113 % higher than STC. The soil physicochemical property analysis showed that SHC and STC increased the soil nutrient content, humification degree, and enzyme activity at any blending ratio. The microbial analysis showed that 20 % SHC in the saline-alkali soil stimulated the growth of functional microorganisms and the addition of SHC promoted the sulfur cycle, nitrogen fixation, and carbon metabolism in the soil-plant system. The correlation analysis showed that pH; nutrient contents; and urease, catalase, sucrase, and phosphatase activities in the saline-alkali soil were significantly correlated with plant growth indexes (p < 0.05). Georgenia and norank_f__Fodinicurvataceae had a stronger correlation with four types of enzyme activities (p < 0.01). SHC improved the saline-alkali soil and promoted plant growth by adjusting soil pH, increasing soil nutrients, and influencing soil enzyme activity and dominant flora. This study provides a theoretical basis for applying SHC products in soil improvement.


Asunto(s)
Compostaje , Lolium , Fertilizantes , Temperatura , Álcalis , Suelo/química , Plantas , Bacterias
13.
Gels ; 10(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38667641

RESUMEN

Soil amendments play a crucial role in modern agriculture, as they effectively enhance the planting environment. This study innovatively proposes the use of gel as a crosslinking agent to embed biochar and hydroxyapatite (HAP), thereby preparing a novel soil amendment. Furthermore, this study investigates the soil improvement effects of this amendment as well as its influence on plant growth. This study employed a hydrothermal method to combine corn stalk (CB) or sludge (SB) biochar with HAP at different ratios (0-20%). Subsequently, sodium alginate gel (SA) was utilized to encapsulate the biochar and minerals, successfully forming a ternary composite gel material (corn stalk biochar/sludge biochar-sodium alginate gel-hydroxyapatite: CB/SB-SA-HAP). Finally, the practical effectiveness of this amendment was verified through potted soil experiments. The results indicate that the CB/SB-SA-HAP composite materials exhibited a micrometre-scale spherical structure with well-developed micropores and possess the functional groups of CB/SB, SA, and HAP, along with unique mineral properties. Through pot experiments, it was verified that the composite material effectively enhances multiple soil properties. After 21 days of cultivation, the soil pH values stabilized within the neutral range (pH = 7 ± 0.3) across all treatment groups. Except for the CB0 (CB:HAP = 1:0) and CB2.0 (CB:HAP = 1:2) treatments, the remaining treatments significantly reduced the soil EC values by 3.27% to 47.92%. All treatments significantly increased the contents of alkali-hydrolysable nitrogen (AHN) (34.89~57.91%), available phosphorus (AP) (35.93~56.55%), and available potassium (AK) (36.41~56.80%) in the soil. In comparison, although the SB treatment was more effective in regulating the pH and electrical conductivity (EC) of saline-alkali soil than the CB treatment, it was less effective in promoting plant growth in the short term. Through correlation analysis and redundancy analysis, a significant positive correlation was found between soil pH and ryegrass germination rate and plant height, particularly with the most pronounced impact on soil pH observed in the CB1.0 and SB0 (SB:HAP = 1:0) treatments. This study underscores the potential of CB/SB-SA-HAP composite materials in soil improvement and plant growth promotion, providing valuable insights for soil remediation, enhancement, and plant cultivation advancements in the agricultural sector.

14.
Microorganisms ; 12(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543667

RESUMEN

Alfalfa (Medicago sativa L.), a forage legume known for its moderate salt-alkali tolerance, offers notable economic and ecological benefits and aids in soil amelioration when cultivated in saline-alkaline soils. Nonetheless, the limited stress resistance of alfalfa could curtail its productivity. This study investigated the salt tolerance and growth-promoting characteristics (in vitro) of four strains of plant growth-promoting rhizobacteria (PGPR) that were pre-selected, as well as their effects on alfalfa at different growth stages (a pot experiment). The results showed that the selected strains belonged to the genera Priestia (HL3), Bacillus (HL6 and HG12), and Paenibacillus (HG24). All four strains exhibited the ability to solubilize phosphate and produce indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Among them, except for strain HG24, the other strains could tolerate 9% NaCl stress. Treatment with 100 mM NaCl consistently decreased the IAA production levels of the selected strains, but inconsistent changes (either enhanced or reduced) in terms of phosphate solubilization, ACC deaminase, and exopolysaccharides (EPS) production were observed among the strains. During the various growth stages of alfalfa, PGPR exhibited different growth-promoting effects: at the seedling stage, they enhanced salt tolerance through the induction of physiological changes; at the flowering stage, they promoted growth through nutrient acquisition. The current findings suggest that strains HL3, HL6, and HG12 are effective microbial inoculants for alleviating salt stress in alfalfa plants in arid and semi-arid regions. This study not only reveals the potential of indigenous salt-tolerant PGPR in enhancing the salt tolerance of alfalfa but also provides new insights into the mechanisms of action of PGPR.

15.
Huan Jing Ke Xue ; 45(2): 940-951, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471932

RESUMEN

Saline-alkali land, as one of the farmland problems that seriously threatens grain yield in the 21st century, is widely distributed and has great potential for development. Biochar is a relatively efficient novel soil amendment, which can play an important role in alleviating the soil acid-base barrier, soil pollution control, carbon sequestration, and fertilizer slow release and has a great prospect in promoting sustainable agricultural development. In recent years, the research and application of biochar to improve saline-alkali soil have attracted much attention. However, due to the complexity and heterogeneity of the structural components of biochar, the improvement effect of biochar on saline-alkali soil is highly uncertain, and there is also a lack of systematic summary and in-depth discussion of the key mechanisms, which limits the further popularization and application of biochar technology in the improvement of saline-alkali soil. This study comprehensively analyzed the effects of biochar on physicochemical properties, nutrient availability, and biological characteristics of saline-alkali soil; summarized the improvement effects of biochar and modified biochar on saline-alkali soil and their effects on quality and efficiency; and elucidated the possible mechanism of biochar in the improvement of saline-alkali soil. The future research prospect of biochar was discussed in order to provide reference for further research and development of green, efficient, and accurate improvement technology of biochar in saline-alkali soil and its popularization and application.


Asunto(s)
Álcalis , Suelo , Suelo/química , Carbón Orgánico , Agricultura
16.
Sci Total Environ ; 926: 171827, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513860

RESUMEN

The incorporation of green manure into cropping systems is a potential strategy for sequestering soil carbon (C), especially in saline-alkali soil. Yet, there are still unknown about the substitution impacts of green manure on nitrogen (N) fertilizer in wheat-green manure multiple cropping system. Herein, a five-year field experiment was performed to determine the impact of three levels of N fertilizer inputs [i.e., N fertilizer reduced by 0 % (100N), 10 % (90 N), and 20 % (80 N)] with aboveground biomass of green manure removal (0GM) and return (100GM) on soil organic carbon (SOC) storage and its primary determinants. The results demonstrated that no significant interaction on SOC storage was detected between green manure and N fertilizer management. 80 N enhanced SOC storage in bulk soil by 7.4 and 13.2 % in 0-20 cm soil depth relative to 100 N and 90 N (p < 0.05). Regardless of N fertilizer levels, compared with 100GM, 0GM increased SOC storage in bulk soil by 14.2-34.6 % in 0-40 cm soil depth (p < 0.05). This was explained by an increase in soil macro-aggregates (>2 and 0.25-2 mm) proportion contributing to SOC physical protection. Meanwhile, the improvement of SOC storage under 0GM was due to the decrease of soil C- and N-acquisition enzyme activities, and microbial resource limitation. Alternatively, the variation partitioning analyses (VPA) results further suggested that C- and N-acquisition enzyme activities, as well as microbial resource limitation were the most important factors for SOC storage. The findings highlighted those biological factors played a dominant role in SOC accumulation compared to physical factors. The aboveground biomass of green manure removal with N fertilizer reduced by 20 % is a viable option to enhance SOC storage in a wheat-green manure multiple cropping system.

17.
Int. microbiol ; 27(1): 311-324, Feb. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-230263

RESUMEN

Management and improving saline-alkali land is necessary for sustainable agricultural development. We conducted a field experiment to investigate the effects of spraying lactic acid bacteria (LAB) on the cucumber and tomato plant soils. Three treatments were designed, including spraying of water, viable or sterilized LAB preparations to the soils of cucumber and tomato plants every 20 days. Spraying sterilized or viable LAB could reduce the soil pH, with a more obvious effect by using viable LAB, particularly after multiple applications. Metagenomic sequencing revealed that the soil microbiota in LAB-treated groups had higher alpha-diversity and more nitrogen-fixing bacteria compared with the water-treated groups. Both viable and sterilized LAB, but not water application, increased the complexity of the soil microbiota interactive network. The LAB-treated subgroups were enriched in some KEGG pathways compared with water or sterilized LAB subgroups, such as environmental information processing–related pathways in cucumber plant; and metabolism-related pathways in tomato plant, respectively. Redundancy analysis revealed association between some soil physico-chemical parameters (namely soil pH and total nitrogen) and bacterial biomarkers (namely Rhodocyclaceae, Pseudomonadaceae, Gemmatimonadaceae, and Nitrosomonadales). Our study demonstrated that LAB is a suitable strategy for decreasing soil pH and improving the microbial communities in saline-alkali land.(AU)


Asunto(s)
Humanos , Bacterias/genética , Microbiología del Suelo , Plantas , Álcalis , Lactobacillales , Metagenoma , Microbiología , Técnicas Microbiológicas , Suelo , Biotecnología/métodos , Metagenómica , Agua/metabolismo
18.
Front Microbiol ; 15: 1255536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374915

RESUMEN

Soil salinization has become a major challenge that severely threatens crop growth and influences the productivity of agriculture. It is urgent to develop effective management measures to improve saline-alkali soil. Thus, in this study, soil properties, microbial communities, and function under desulfurization gypsum (DE), soil amendment (SA), farm manure (FA), and co-application of desulfurization gypsum, soil amendment, and farm manure (TA) in a field experiment were examined by high-throughput sequencing. The results showed that the application of modified materials is an effective approach in improving saline-alkali soil, especially TA treatment significantly increased the content of available phosphorus (AP), available potassium (AK), soil organic matter (SOM), and alkaline hydrolysis nitrogen (AHN) and decreased pH, bulk density (BD), and electrical conductivity (EC). The application of modified materials resulted in notable enhancement in fungal diversity and altered the composition and structure of the fungal community. Conversely, the effect on the bacterial community was comparatively minor, with changes limited to the structure of the community. Regarding the fungal community composition, Ascomycota, Mortierellomycota, and Basidiomycota emerged as the dominant phyla across all treatments. At each taxonomic level, the community composition exhibited significant variations in response to different modified materials, resulting in divergent soil quality. The TA treatment led to a decrease in Mortierellomycota and an increase in Ascomycota, potentially enhancing the ability to decompose organic matter and facilitate soil nutrient cycling. Additionally, the sensitivity of fungal biomarkers to modified materials surpassed that of the bacterial community. The impact of modified materials on soil microbial communities primarily stemmed from alterations in soil EC, AP, AK, and SOM. FUNGuild analysis indicated that the saprotroph trophic mode group was the dominant component, and the application of modified materials notably increased the symbiotroph group. PICRUSt analysis revealed that metabolism was the most prevalent functional module observed at pathway level 1. Overall, the application of modified materials led to a decrease in soil EC and an increase in nutrient levels, resulting in more significant alterations in the soil fungal community, but it did not dramatically change the soil bacterial community. Our study provides new insights into the application of modified materials in increasing soil nutrients and altering soil microbial communities and functions and provides a better approach for improving saline-alkali soil of Hetao Plain.

19.
Microorganisms ; 12(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38399680

RESUMEN

Improving the soil structure and fertility of saline-alkali land is a major issue in establishing a sustainable agro-ecosystem. To explore the potential of different straw returning in improving saline-alkaline land, we utilized native saline-alkaline soil (SCK), wheat straw-returned saline-alkaline soil (SXM) and rapeseed straw-returned saline-alkaline soil (SYC) as our research objects. Soil physicochemical properties, fungal community structure and diversity of saline-alkaline soils were investigated in different treatments at 0-10 cm, 10-20 cm and 20-30 cm soil depths. The results showed that SXM and SYC reduced soil pH and total salinity but increased soil organic matter, alkali-hydrolyzable nitrogen, available phosphorus, total potassium, etc., and the enhancement effect of SYC was more significant. The total salinity of the 0-10 cm SCK soil layer was much higher than that of the 10-30 cm soil layers. Fungal diversity and abundance were similar in different soil layers in the same treatment. SXM and SYC soil had higher fungal diversity and abundance than SCK. At the genus level, Plectosphaerella, Mortierella and Ascomycota were the dominant groups of fungal communities in SXM and SYC. The fungal diversity and abundance in SXM and SYC soils were higher than in SCK soils. Correlation network analysis of fungal communities with environmental factors showed that organic matter, alkali-hydrolyzable nitrogen and available phosphorus were the main environmental factors for the structural composition of fungal communities of Mortierella, Typhula, Wickerhamomyces, Trichosporon and Candida. In summary, straw returning to the field played an effective role in improving saline-alkaline land, improving soil fertility, affecting the structure and diversity of the fungal community and changing the interactions between microorganisms.

20.
Sci Total Environ ; 912: 169214, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38092203

RESUMEN

Sodium carboxymethyl cellulose (CMCNa) application has been a promising approach to improve soil quality. The purpose of this study was to explore the effects of CMC-Na on soil infiltration, evaporation, water-salt distribution, crop growth, water use efficiency and net profit (Net) in a coastal saline-alkali soil maize-wheat cropping system (MWCS). Five CMC-Na application amounts (0, 0.1, 0.2, 0.4 and 0.6 g kg-1) were designed for the soil column experiment indoor, and five CMC-Na application amounts were used in 2019-2020 field experiment (CK: 0, C10: 10 kg ha-1, C20: 10 kg ha-1, C30: 10 kg ha-1 and C50: 10 kg ha-1), No treatment will be applied in 2021. The results showed that (1) CMC-Na treatment reduced soil cumulative infiltration, infiltration rate, daily evaporation, and cumulative evaporation. (2) After the application of CMCNa, the average soil water storage (SWS) in the 0-60 cm soil layer increased, and soil salinity (SSC) decreased in most treatments. (3) In the 2019-2020, the maize aboveground biomass (B), yield (Y) and water use efficiency (WUE) were the highest under the C20 and C30 treatments, which were 15.24 and 15.32 t ha-1, 5.67 and 5.49 t ha-1 and 1.74 and 1.52 kg ha-1 mm-1, respectively, and the wheat under C30 treatment is the highest, which were 10.98 t ha-1, 5.27 t ha-1 and 1.78 kg ha-1 mm-1. (4) A dose of 25.5 kg ha-1 and 38.9 kg ha-1 was recommended as the most optimal CMC-Na application for maize and wheat in coastal saline alkali soil, respectively.


Asunto(s)
Suelo , Triticum , Zea mays , Carboximetilcelulosa de Sodio , Álcalis , Agua , Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA