Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38672337

RESUMEN

Soybean isoflavones (SIFs), a group of secondary metabolites, have antioxidant, anti-inflammatory, and hormone-like activities. Supplementation with SIFs in the diet was reported to promote lactation performance in ruminants. The present study was performed to further decipher the effect of various concentrations of SIFs on growth and slaughter performance, serum parameters, meat quality, and ruminal microbiota in fattening goats. After a two-week acclimation, a total of 27 5-month-old Guanzhong male goats (18.29 ± 0.44 kg) were randomly assigned to control (NC), 100 mg/d SIF (SIF1), or 200 mg/d SIF (SIF2) groups. The experimental period lasted 56 days. The weight of the large intestine was greater (p < 0.05) in the SIF1 and SIF2 groups compared with the NC group. Meat quality parameters indicated that SIF1 supplementation led to lower (p < 0.05) cooking loss and shear force (0.05 < p < 0.10). The 16S rRNA sequencing analysis demonstrated that SIF1 supplementation led to lower (p < 0.05) proportions of Papillibacter and Prevotellaceae_UCG-004 but greater (p < 0.05) CAG-352 abundance in the rumen; these responses might have contributed to the improvement in production performance. In conclusion, meat quality and ruminal microbiome could be manipulated in a positive way by oral supplementation with 100 mg/d of SIFs in fattening goats. Thus, this study provides new insights and practical evidence for the introduction of SIFs as a novel additive in goat husbandry.

2.
J Sci Food Agric ; 103(3): 1522-1529, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36184578

RESUMEN

BACKGROUND: Considering the high energy demand of lactation and the potential of guanidinoacetic acid (GAA) addition on the increase in creatine supply for cows, the present study investigated the effects of 0, 0.3, 0.6 and 0.9 g kg-1 dry matter (DM) of GAA supplementation on lactation performance, nutrient digestion and ruminal fermentation in dairy cows. The study used 40 mid-lactation multiparous Holstein cows and the study duration was 100 days. RESULTS: DM intake was not affected, but milk and milk component yields and feed efficiency increased linearly with increasing GAA addition. The total-tract digestibility of DM, organic matter, neutral detergent fibre, acid detergent fibre and non-fibre carbohydrates increased linearly and that of crude protein increased quadratically with increasing GAA addition. When the addition level of GAA increased, ruminal pH, molar percentages of butyrate, isobutyrate and isovalerate and the acetate-to-propionate ratio decreased linearly, and the total volatile fatty acids concentration and propionate molar percentage also increased linearly, whereas the acetate molar percentage and ammonia-N concentration were unaltered. The activities of fibrolytic enzymes, α-amylase and protease increased linearly. The populations of total bacteria, fungi, Ruminococcus albus, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminobacter amylophilus and Prevotella ruminicola increased linearly, whereas protozoa and methanogens decreased linearly with increasing GAA addition. As for the blood metabolites, concentrations of glucose, urea nitrogen and methionine were unchanged, total protein, albumin, creatine and homocysteine increased linearly, and folate decreased linearly with increasing GAA supply. CONCLUSION: The results of the present study indicate that supplementation of GAA improved milk performance and rumen fermentation in lactating dairy cows. © 2022 Society of Chemical Industry.


Asunto(s)
Suplementos Dietéticos , Lactancia , Femenino , Bovinos , Animales , Propionatos/metabolismo , Fermentación , Rumen/metabolismo , Creatina/metabolismo , Detergentes , Alimentación Animal/análisis , Leche/metabolismo , Nutrientes , Digestión , Dieta/veterinaria
3.
Front Vet Sci ; 9: 1004841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187804

RESUMEN

The present study was performed to evaluate the impacts of tannic acid (TA) supplementation at different levels on the growth performance, physiological, oxidative and immunological metrics, and ruminal microflora of Xiangdong black goats. Twenty-four goats were randomly assigned to four dietary treatments: the control (CON, basal diet), the low-dose TA group [TAL, 0.3 % of dry matter (DM)], the mid-dose TA group (TAM, 0.6 % of DM), and the high-dose TA group (TAH, 0.9 % of DM). Results showed that the growth performance was unaffected (P > 0.05) by adding TA, whilst the 0.3 % and 0.6 % TA supplementation significantly decreased (P < 0.05) the apparent digestibility of crude protein (CP) and ruminal NH3-N concentration, and raised (P < 0.05) the level of total volatile fatty acid (TVFA) in rumen. The increments of alanine aminotransferase (ALT), triglyceride (TG), cortisol (CORT), total antioxidant capacity (T-AOC), interleukin (IL)-1ß, IL-6, and serumamyloid A (SAA), and decrements of globulin (GLB), immunoglobulin G (IgG), cholinesterase (CHE), glutathione reductase (GR), creatinine (CRE), growth hormone (GH), high-density lipoprotein cholesterol (HDLC), and insulin-like growth factor 1 (IGF-1) to different extents by TA addition were observed. Although the Alpha and Beta diversity of rumen bacterial community remained unchanged by supplementing TA, the relative abundance of the predominant genus Prevotella_1 was significantly enriched (P < 0.05) in TAL. It could hence be concluded that the TA supplementation in the present trial generally decreased CP digestion and caused oxidative stress and inflammatory response without influencing growth performance and ruminal microbiota diversity. More research is needed to explore the premium dosage and mechanisms of effects for TA addition in the diet of goats.

4.
Animal ; 14(6): 1176-1183, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31840620

RESUMEN

The combined addition of branched-chain volatile fatty acids (BCVFAs) and folic acid (FA) could improve growth performance and nutrient utilization by stimulating ruminal microbial growth and enzyme activity. This study was conducted to evaluate the effects of BCVFA and FA addition on growth performance, ruminal fermentation, nutrient digestibility, microbial enzyme activity, microflora and excretion of urinary purine derivatives (PDs) in calves. Thirty-six Chinese Holstein weaned calves (60 ± 5.4 days of age and 107 ± 4.7 kg of BW) were assigned to one of four groups in a randomized block design. Treatments were control (without additives), FA (with 10 mg FA/kg dietary DM), BCVFA (with 5 g BCVFA/kg dietary DM) and the combined addition of FA and BCVFA (10 mg/kg DM of FA and 5 g/kg DM of BCVFA). Supplements were hand-mixed into the top one-third of total mixed ration. Dietary concentrate to maize silage ratio was 50 : 50 on a DM basis. Dietary BCVFA or FA addition did not affect dry matter intake but increased average daily gain (ADG) and feed conversion efficiency. Ruminal pH and ammonia N were lower, and total volatile fatty acids (VFAs) concentration was higher for BCVFA or FA addition than for control. Dietary BCVFA or FA addition did not affect acetate proportion but decreased propionate proportion and increased acetate to propionate ratio. Total tract digestibility of DM, organic matter, CP and NDF was higher for BCVFA or FA addition than for control. Dietary BCVFA or FA addition increased activity of carboxymethyl cellulase and cellobiase, population of total bacteria, fungi, Ruminococcus albus, R. flavefaciens, Fibrobacter succinogenes and Prevotella ruminicola as well as total PD excretion. Ruminal xylanase, pectinase and protease activity and Butyrivibrio fibrisolvens population were increased by BCVFA addition, whereas population of protozoa and methanogens was increased by FA addition. The BCVFA × FA interaction was significant for acetate to propionate ratio, cellobiase activity and total PD excretion, and these variables increased more with FA addition in diet without BCVFA than in diet with BCVFA. The data indicated that supplementation with BCVFA or FA increased ADG, nutrient digestibility, ruminal total VFA concentration and microbial protein synthesis by stimulating ruminal microbial growth and enzyme activity in calves.


Asunto(s)
Bovinos/fisiología , Celulasa/metabolismo , Suplementos Dietéticos/análisis , Ácidos Grasos Volátiles/administración & dosificación , Ácido Fólico/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Amoníaco/metabolismo , Animales , Bovinos/crecimiento & desarrollo , Bovinos/microbiología , Dieta/veterinaria , Digestión/efectos de los fármacos , Femenino , Fermentación , Nutrientes/metabolismo , Rumen/metabolismo , Rumen/microbiología , Ensilaje/análisis , Destete
5.
J Appl Microbiol ; 127(6): 1627-1634, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31436882

RESUMEN

AIMS: The influence of Lactobacillus farciminis on ruminal fermentation characteristics was elucidated in this study. METHODS AND RESULTS: Ruminal fermentation was conducted using maize silage ration (R) and concentrate (C) as 75R:25C, 50R:50C and 25R:75C, supplemented with lactic acid bacteria (LB) at 0, 20 and 30 mg g-1 dry matter substrate and their interaction (1st experiment). The same LB product was used at 0, 20, 40 and 60 mg g-1 dry matter of the mixture (1 : 1) of oat straw and concentrate for 48 h of incubation (2nd experiment). At 24 and 48 h of incubation, LB0 produced the highest biogas and LB20 produced the lowest, whereas at 48 h of incubation LB40 produced the lowest. In ration x LB, LB40 resulted in the highest biogas production, while LB0 had the lowest (P < 0·001) at 8, 10 and 12 h of incubation. Inclusions of LB0, 20, 40 and 60 mg g-1 dry matter resulted in a linear increase (P < 0·003) in the asymptotic biogas production and fermentation parameters in a dose-dependent manner, except in pH which decreased (P = 0·029). CONCLUSIONS: The use of L. farciminis in diet with high level of concentrate without any adverse effect on the pH of rumen fluid to the point of acidosis. Furthermore, in high forage diet, the use of L. farciminis would help to improve the ruminal fermentation digestibility and mitigate ruminal biogas production. SIGNIFICANCE AND IMPACT OF THE STUDY: Using Lactobacillus as a feed additive can improve ruminal fermentation activities by maintaining the stability of pH in the rumen and improving the feed utilization through manipulation of the microbial ecosystem.


Asunto(s)
Biocombustibles/análisis , Lactobacillus/metabolismo , Rumen/microbiología , Ensilaje/análisis , Animales , Avena , Biocombustibles/microbiología , Digestión , Fermentación , Concentración de Iones de Hidrógeno , Ensilaje/microbiología , Zea mays
6.
J Environ Sci Health B ; 54(3): 170-175, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30430903

RESUMEN

Two essential oils (EO), thymol and carvacrol, were used in six ratio (100:00, 80:20, 60:40, 40:60, 20:80 and 00:100) combinations of both EO and in a dose of 0.2 g L-1 in bovine ruminal culture medium, 24-h cultures, to evaluate effects on total gas production (TGP), methane production, in vitro dry matter digestibility (IVDMD) and in vitro culture population dynamics of methanogenic and total bacteria. Total DNA extracted from ruminal microorganisms was subjected to denaturing gradient gel electrophoresis (DGGE)-polymerase chain reaction (PCR) to examine effects on bacterial populations. The effect of EO on TGP and IVDMD were assessed by comparison to untreated control cultures. In general, methane production by the microbial populations appeared to be higher with treatments containing the highest concentration of thymol than with treatments containing more carvacrol resulting in a tendency for greater methane-inhibiting activity achieved as the thymol concentration in the thymol:carvacrol mixtures decreased linearly. The population of total bacteria with a 74.5% Dice similarity coefficient for comparison of DGGE band patterns indicating shifts in bacterial constituents as EO ratios changed. No effects on TGP, IVDMD while only slight shifts in the methanogenic populations were seen with an overall 91.5% Dice similarity coefficient.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Metano/metabolismo , Monoterpenos/farmacología , Rumen/microbiología , Timol/farmacología , Animales , Técnicas Bacteriológicas , Bovinos , Cimenos , Electroforesis en Gel de Gradiente Desnaturalizante , Digestión , Fermentación , Microbioma Gastrointestinal/fisiología , Aceites Volátiles/farmacología , Reacción en Cadena de la Polimerasa
7.
Microb Pathog ; 115: 208-215, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29278783

RESUMEN

The present investigation was conducted to evaluate the effects of Escherichia coli against the ruminal microflora fermentation activities in the mitigation of CH4 and CO2 production as well as ruminal fermentation kinetics by substituting dietary corn grain with prickly pear cactus (PC) flour. Three total mixed PC rations were prepared (/kg DM): 0 g (Control), 75 g (PC75), and 150 g (PC150). Besides, E. coli was supplemented at four different levels (dose): 0, 10, 20, and 40 mg/g DM of substrates. The in vitro rumen GP, CH4, and CO2 were estimated to be affected due to various doses of E. coli up to 72 h of incubation. Asymptotic GP, fractional rate of GP, and lag time were influenced significantly (P < .05) in the presence of ration. However, E. coli doses showed minor impact on the rate of GP as well as lag time. The asymptotic CH4 production was decreased linearly (P = .005) at the ration PC150. E. coli doses reduced the asymptotic CH4 production at 10 and 20 mg/g DM. The asymptotic CO2 production was linearly (P < .001) decreased by different levels of PC. The cubic (P = .023) effect of E. coli doses as well as significant (P = .002) ration × E. coli doses impact were reported on asymptotic CO2 production. The fractional rate of GP was quadratically (P < .05) influenced by PC and E. coli doses. The rations, dose, and rations × E. coli dose interaction had no influence (P > .05) on lag time. In a nutshell, PC flour inclusion in diet has the potentiality to replace the existing conventional feedstuffs for ruminant. Most importantly, revealing the first report, PC flours along with E. coli supplementation at varied doses mitigated the ruminal biogases production. This was as consequence to the antimicrobial impacts of E. coli against ruminal microflora, and that could certainly be a promising approach in order to improve ruminant's diet constituents.


Asunto(s)
Alimentación Animal/análisis , Dióxido de Carbono/metabolismo , Escherichia coli/metabolismo , Metano/biosíntesis , Opuntia/metabolismo , Rumen/microbiología , Animales , Bovinos , Dieta , Digestión , Femenino , Fermentación/fisiología , Microbioma Gastrointestinal , Residuos Sólidos , Granos Enteros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA