Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34849760

RESUMEN

Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma (GBM), which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes. Drosophila border cells, which migrate as a small cell cluster in the developing ovary, are a well-studied and genetically accessible model used to identify general mechanisms that control collective cell migration within native tissue environments. Most cell collectives remain cohesive through a variety of cell-cell adhesion proteins during their migration through tissues and organs. In this study, we first identified cell adhesion, cell matrix, cell junction, and associated regulatory genes that are expressed in human brain tumors. We performed RNAi knockdown of the Drosophila orthologs in border cells to evaluate if migration and/or cohesion of the cluster was impaired. From this screen, we identified eight adhesion-related genes that disrupted border cell collective migration upon RNAi knockdown. Bioinformatics analyses further demonstrated that subsets of the orthologous genes were elevated in the margin and invasive edge of human GBM patient tumors. These data together show that conserved cell adhesion and adhesion regulatory proteins with potential roles in tumor invasion also modulate collective cell migration. This dual screening approach for adhesion genes linked to GBM and border cell migration thus may reveal conserved mechanisms that drive collective tumor cell invasion.


Asunto(s)
Proteínas de Drosophila , Glioblastoma , Animales , Adhesión Celular/genética , Movimiento Celular/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Glioblastoma/metabolismo , Humanos , Interferencia de ARN
2.
Development ; 143(2): 329-38, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657767

RESUMEN

The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mioblastos/citología , Testículo/citología , Animales , Drosophila , Proteínas de Drosophila/genética , Masculino , Modelos Biológicos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/fisiología , Testículo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA