Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Mol Divers ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900332

RESUMEN

Leprosy, caused by Mycobacterium leprae, remains a significant global health challenge, necessitating innovative approaches to therapeutic intervention. This study employs advanced computational drug discovery techniques to identify potential inhibitors against the ML2640c protein, a key factor in the bacterium's ability to infect and persist within host cells. Utilizing a comprehensive methodology, including virtual screening, re-docking, molecular dynamics simulations, and free energy calculations, we screened a library of compounds for their interaction with ML2640c. Four compounds (24349836, 26616083, 26648979, and 26651264) demonstrated promising inhibitory potential, each exhibiting unique binding energies and interaction patterns that suggest a strong likelihood of disrupting the protein function. The study highlights the efficacy of computational methods in identifying potential therapeutic candidates, presenting compound 26616083 as a notably potent inhibitor due to its excellent binding affinity and stability. Our findings offer a foundation for future experimental validation and optimization, marking a significant step forward in the development of new treatments for leprosy. This research not only advances the fight against leprosy but also showcases the broader applicability of computational drug discovery in tackling infectious diseases.

2.
J Integr Bioinform ; 21(2)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797876

RESUMEN

Protein structure determination has made progress with the aid of deep learning models, enabling the prediction of protein folding from protein sequences. However, obtaining accurate predictions becomes essential in certain cases where the protein structure remains undescribed. This is particularly challenging when dealing with rare, diverse structures and complex sample preparation. Different metrics assess prediction reliability and offer insights into result strength, providing a comprehensive understanding of protein structure by combining different models. In a previous study, two proteins named ARM58 and ARM56 were investigated. These proteins contain four domains of unknown function and are present in Leishmania spp. ARM refers to an antimony resistance marker. The study's main objective is to assess the accuracy of the model's predictions, thereby providing insights into the complexities and supporting metrics underlying these findings. The analysis also extends to the comparison of predictions obtained from other species and organisms. Notably, one of these proteins shares an ortholog with Trypanosoma cruzi and Trypanosoma brucei, leading further significance to our analysis. This attempt underscored the importance of evaluating the diverse outputs from deep learning models, facilitating comparisons across different organisms and proteins. This becomes particularly pertinent in cases where no previous structural information is available.


Asunto(s)
Pliegue de Proteína , Proteínas Protozoarias , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi , Leishmania , Aprendizaje Profundo , Trypanosoma brucei brucei/metabolismo , Modelos Moleculares , Biología Computacional/métodos
3.
Med Chem ; 20(2): 153-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37957860

RESUMEN

INTRODUCTION: Within the scope of the project, this study aimed to find novel inhibitors by combining computational methods. In order to design inhibitors, it was aimed to produce molecules similar to the RdRp inhibitor drug Favipiravir by using the deep learning method. METHODS: For this purpose, a Trained Neural Network (TNN) was used to produce 75 molecules similar to Favipiravir by using Simplified Molecular Input Line Entry System (SMILES) representations. The binding properties of molecules to Viral RNA-dependent RNA polymerase (RdRp) were studied by using molecular docking studies. To confirm the accuracy of this method, compounds were also tested against 3CL protease (3CLpro), which is another important enzyme for the progression of SARS-CoV-2. Compounds having better binding energies and RMSD values than favipiravir were searched with similarity analysis on the ChEMBL drug database in order to find similar structures with RdRp and 3CLpro inhibitory activities. RESULTS: A similarity search found new 200 potential RdRp and 3CLpro inhibitors structurally similar to produced molecules, and these compounds were again evaluated for their receptor interactions with molecular docking studies. Compounds showed better interaction with RdRp protease than 3CLpro. This result presented that artificial intelligence correctly produced structures similar to favipiravir that act more specifically as RdRp inhibitors. In addition, Lipinski's rules were applied to the molecules that showed the best interaction with RdRp, and 7 compounds were determined to be potential drug candidates. Among these compounds, a Molecular Dynamic simulation study was applied for ChEMBL ID:1193133 to better understand the existence and duration of the compound in the receptor site. CONCLUSION: The results confirmed that the ChEMBL ID:1193133 compound showed good Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), hydrogen bonding, and remaining time in the active site; therefore, it was considered that it could be active against the virus. This compound was also tested for antiviral activity, and it was determined that it did not delay viral infection, although it was cytotoxic between 5mg/mL-1.25mg/mL concentrations. However, if other compounds could be tested, it might provide a chance to obtain activity, and compounds should also be tested against the enzymes as well as the other types of viruses.


Asunto(s)
Amidas , Inteligencia Artificial , COVID-19 , Pirazinas , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Aprendizaje Automático , Péptido Hidrolasas , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN , Antivirales/farmacología , Inhibidores de Proteasas/farmacología
4.
Chem Biodivers ; 20(10): e202301113, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37691012

RESUMEN

Some novel inhibitors based on the (benzo[d]thiazol-2-yl)-1-phenylmethanimine derivatives were designed to reduce the aggregation process in Alzheimer's disease. These structures seem to mimic stilbene-like scaffold, while the benzothiazole moiety "locks" the thioflavin T binding site. Other inhibitors were designed based on 2-((benzo[d]thiazol-2-ylimino)methyl)-5-(benzyloxy)-1-methylpyridin-4(H)-one derivatives. Benzo[d]thiazol-2-amine derivatives were prepared by the reaction of aniline derivatives with ammonium thiocyanate in the presence of bromine/acetic acid. Then, the reaction of amines with benzaldehyde derivatives and 5-(benzyloxy)-1-methyl-4-oxo-1,4-dihydropyridine-2-carbaldehyde gave the desired compounds. The plate reader-based fibrillation assay was done to evaluate the inhibition of Aß aggregation. Also, molecular dynamic simulation was carried out to clarify the interaction manner of the designed compounds with Aß formation. The biological evaluation proved 5a and 7e as the best inhibitor of the Aß aggregation. compound 5a in the concentration of 50 µM inhibited Aß fibril formation better than 7e. MD simulation elucidated that the Aß aggregation inhibitors in different concentrations represented different binding conformations throughout the entire or in one area of Aß. MD showed the ligands in lower concentrations accumulate in an area of Aß aggregations and separate one fibril from the aggregated Aß. On the contrary, in higher concentrations, the ligands tend to be located through the entire Aß.

5.
Environ Sci Pollut Res Int ; 30(42): 96329-96349, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37572249

RESUMEN

Exploring the spatial relationship and ecological compensation mechanism of each function of arable land in poor mountainous areas is important to promote rural revitalization and enhance arable land protection. Taking the mountainous region of Western Hubei (MRWH) as an example, this study quantified the "three living" functions of arable land and its secondary functions. Using the root mean square deviation method to calculate the trade-off index, a quantitative method can more scientifically reflect the trade-off relationship between arable land functions and measure the overall ecological compensation. Studies have shown that (1) the value of the production function exhibits a growing and subsequently a falling trend, whereas the value of living function and ecological function exhibits an increasing trend over time, with an average functional value of 5310, 220 and 6496 million yuan, respectively. The spatial pattern of the "three living" functional values decreases from west to east. Among them, water conservation and soil conservation function values show a high distribution in the south and low in the north, gas purification and agricultural pollution functional values show a scattered spatial pattern, and the value of other functions shows an increasing trend from southeast to northwest; (2) among the primary functions, the trade-off between production and ecological functions is the strongest, decreasing, and then increasing over time, with an average trade-off index of 0.89. Among the secondary functions, there is the most obvious trade-off between the food supply function and the five ecological functions, which requires coordination; (3) overall, the total amount of ecological compensation has shown an upward trend, with priority areas for level I ecological compensation increasing year by year. Optimized compensation zones and potential compensation zones are concentrated in the northwest, ecological balance zones are located in the central part, and optimized development compensation zones and key development compensation zones are located in the southeast. According to the research, MRWH is oriented to ecological function, followed by the production function, supplemented by the living function. Green agriculture should be vigorously developed and ecological function space should be compressed by strictly limiting the excessive expansion of production activities. Promoting the improvement of production function through ecological function, while exploring the potential value of living function. Ecological compensation in strict accordance with the priority of ecological compensation, zoning. Realizing cross-regional cooperation, low compensation areas drive high compensation areas to achieve sustainable development of arable land.


Asunto(s)
Conservación de los Recursos Naturales , Conservación de los Recursos Hídricos , Conservación de los Recursos Naturales/métodos , Suelo , Agricultura , Desarrollo Sostenible , China , Ecosistema
6.
J Biochem ; 174(2): 203-216, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37094335

RESUMEN

The pre-spliceosomal complex involves interactions between U1 and U2 snRNPs, where a ubiquitin-like domain (ULD) of SF3A1, a component of U2 snRNP, binds to the stem-loop 4 (SL4; the UUCG tetraloop) of U1 snRNA in U1 snRNP. Here, we reported the 1.80 Å crystal structure of human SF3A1 ULD (ULDSF3A1) complexed with SL4. The structural part of ULDSF3A1 (res. 704-785) adopts a typical ß-grasp fold with a topology of ß1-ß2-α1-310a-ß3-ß4-310b-ß5, closely resembling that of ubiquitin, except for the length and structure of the ß1/ß2 loop. A patch on the surface formed by three ULDSF3A1-specific residues, Lys756 (ß3), Phe763 (ß4) and Lys765 (following ß4), contacts the canonical UUCG tetraloop structure. In contrast, the directly following C-terminal tail composed of 786KERGGRKK793 was essentially stretched. The main or side chains of all the residues interacted with the major groove of the stem helix; the RGG residues adopted a peculiar conformation for RNA recognition. These findings were confirmed by mutational studies using bio-layer interferometry. Collectively, a unique combination of the ß-grasp fold and the C-terminal tail constituting ULDSF3A1 is required for the SL4-specific binding. This interaction mode also suggests that putative post-translational modifications, including ubiquitination in ULDSF3A1, directly inhibit SL4 binding.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U2 , Ubiquitina , Humanos , Ribonucleoproteína Nuclear Pequeña U2/genética , Ubiquitina/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN , Factores de Empalme de ARN
7.
Heliyon ; 9(3): e14029, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911881

RESUMEN

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

8.
J Ethnopharmacol ; 309: 116355, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36914035

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pain and inflammation are the major symptoms of almost every human disease. Herbal preparations from Morinda lucida are used to treat pain and inflammation in traditional medicine. However, the analgesic and anti-inflammatory activities of some of the plant's chemical constituents are not known. AIM OF THE STUDY: The aim of this study is to evaluate the analgesic and anti-inflammatory activities and possible mechanisms of these activities of iridoids from Morinda lucida. MATERIAL AND METHODS: The compounds were isolated using column chromatography and characterized by NMR spectroscopy and LC-MS. Anti-inflammatory activity was evaluated using carrageenan-induced paw edema. Whereas, the analgesic activity was assessed in the hot plate and acetic acid-induced writhing assays. Mechanistic studies were conducted using pharmacological blockers, determination of antioxidant enzymes, lipid peroxidation, and docking studies. RESULTS: The iridoid, ML2-2 exhibited inverse dose-dependent anti-inflammatory activity (42.62% maximum at 2 mg/kg p. o). ML2-3 produced dose-dependent anti-inflammatory activity (64.52% maximum at 10 mg/kg p. o.). Anti-inflammatory activity of diclofenac sodium was 58.60% at 10 mg/kg p. o. Furthermore, ML2-2 and ML2-3 produced analgesic activity (P < 0.01) of 44.44 ± 5.84 and 54.18 ± 19.01%. at 10 mg/kg p. o. respectively in the hot plate assay and 64.88 and 67.44% in the writhing assay. ML2-2 significantly elevated catalase activity. However, ML2-3 elevated SOD and catalase activity significantly. In the docking studies, both iridoids formed stable crystal complexes with delta and kappa opioid receptors, and the COX-2 enzyme with very low free binding energies (ΔG) from -11.2 to -14.0 kcal/mol. However, they did not bind with the mu opioid receptor. The lower bound RMSD of most of the poses were found to be ≤ 2. Several amino acids were involved in the interactions through various inter molecular forces. CONCLUSION: These results indicate that ML2-2 and ML2-3 possessed very significant analgesic and anti-inflammatory activities via acting as both delta and kappa opioid receptor agonist, elevation of anti-oxidant activity and inhibition of COX-2.


Asunto(s)
Morinda , Rubiaceae , Humanos , Ciclooxigenasa 2/metabolismo , Receptores Opioides delta , Catalasa , Iridoides/farmacología , Iridoides/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Carragenina , Inflamación/tratamiento farmacológico , Antioxidantes , Superóxido Dismutasa/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo
9.
J Biomol Struct Dyn ; 41(22): 13496-13508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755438

RESUMEN

Tankyrase (TNKS) enzymes remained central biotargets to treat Wnt-driven colorectal cancers. The success of Olaparib posited the druggability of PARP family enzymes depending on their role in tumor proliferation. In this work, an MD-simulation-based comparative assessment of the protein-ligand interactions using the best-docked poses of three selected compounds (two of the designed and previously synthesized molecules obtained through molecular docking and one reported TNKS inhibitor) was performed for a 500 ns period. The PDB:ID-7KKP and 3U9H were selected for TNKS1 and TNKS2, respectively. The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) based binding energy data exhibited stronger binding of compound-15 (average values of -102.92 and -104.32 kcal/mol for TNKS1 and TNKS2, respectively) as compared to compound-22 (average values of -82.99 and -85.68 kcal/mol for TNKS1 and TNKS2, respectively) and the reported compound-32 (average values of -81.89 and -74.43 kcal/mol for TNKS1 and TNKS2, respectively). Compound-15 and compound-22 exhibited comparable or superior binding to both receptors forming stable complexes when compared to that of compound-32 upon examining their MD trajectories. The key contributors were hydrophobic stacking and optimum hydrogen bonding allowing these molecules to occupy the adenosine pocket by interfacing D-loop residues. The results of bond distance analysis, radius of gyration, root mean square deviation, root mean square fluctuation, snapshots at different time intervals, LUMO-HUMO energy differences, electrostatic potential calculations, and binding free energy suggested better binding efficiency for compound-15 to TNKS enzymes. The computed physicochemical and ADMET properties of compound-15 were encouraging and could be explored further for drug development.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Tanquirasas , Simulación del Acoplamiento Molecular , Tanquirasas/química , Triazoles/farmacología
10.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838640

RESUMEN

The emergence of multi-drug-resistant Mycobacterium tuberculosis (Mtb) strains has rendered many of the currently available anti-TB drugs ineffective. Hence, there is a pressing need to discover new potential drug targets/candidates. In this study, attempts have been made to identify novel inhibitors of the ribonuclease VapC2 of Mtb H37Rv using various computational techniques. Ribonuclease VapC2 Mtb H37Rv's protein structure was retrieved from the PDB databank, 22 currently used anti-TB drugs were retrieved from the PubChem database, and protein-ligand interactions were analyzed by docking studies. Out of the 22 drugs, rifampicin (RIF), being a first-line drug, showed the best binding energy (-8.8 Kcal/mol) with Mtb H37Rv VapC2; hence, it was selected as a parent molecule for the design of its derivatives. Based on shape score and radial plot criteria, out of 500 derivatives designed through SPARK (Cresset®, Royston, UK) program, the 10 best RIF derivatives were selected for further studies. All the selected derivatives followed the ADME criteria concerning drug-likeness. The docking of ribonuclease VapC2 with RIF derivatives revealed the best binding energy of -8.1 Kcal/mol with derivative 1 (i.e., RIF-155841). A quantitative structure-activity relationship study revealed that derivative 1's activity assists in the inhibition of ribonuclease VapC2. The stability of the VapC2-RIF155841 complex was evaluated using molecular dynamics simulations for 50 ns and the complex was found to be stable after 10 nsec. Further, a chemical synthesis scheme was designed for the newly identified RIF derivative (RIF-155841), which verified that its chemical synthesis is possible for future in vitro/in vivo experimental validation. Overall, this study evaluated the potential of the newly designed RIF derivatives with respect to the Mtb VapC2 protein, which is predicted to be involved in some indispensable processes of the related pathogen. Future experimental studies regarding RIF-155841, including the exploration of the remaining RIF derivatives, are warranted to verify our current findings.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Rifampin/farmacología , Ribonucleasas/farmacología , Simulación de Dinámica Molecular , Sensibilidad y Especificidad
11.
J Biomol Struct Dyn ; 41(6): 2478-2491, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35105279

RESUMEN

Kaempferol is a natural flavonol that shows many pharmacological properties including anti-inflammatory, antioxidant, anticancer, antidiabetic activities etc. It has been reported in many vegetables, fruits, herbs and medicinal plants. The enzyme flavonol synthase (FLS, EC 1.14.20.6) catalyses the conversion of dihydroflavonols to flavonols. Whereas flavonoid 3'-monooxygenase (F3'H, EC 1.14.14.82) catalyses the hydroxylation of dihydroflavonol, and flavonol. FLS is involved in the synthesis of the kaempferol whereas F3'H causes degradation of kaempferol. The present study aimed to analyse the binding affinity, stability and activating activity of enzyme FLS as well as inhibitory activity of enzyme F3'H involved in the enrichment of the kaempferol using the in-silico approaches. Computational study for physico-chemical properties, conserved domain identification, 3-D structure prediction and its validation, conservation analysis, molecular docking followed by molecular dynamics analysis of FLS and F3'H, protein-activator (FLS-LIG Complex) and protein-inhibitor (F3'H-LIG Complex) complexes have been performed. Other structural analyses like root mean square fluctuation (RMSF), root mean square deviation (RMSD), surface area solvent accessibility (SASA), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA), Poisson-Boltzmann analysis (MM_PBSA) and the dynamic cross correlation map (DCCM) analysis to explore the structural, functional and thermodynamic stability of the proteins and the complexes were also studied. The molecular docking result showed that FLS binds strongly with the activator ascorbate (CID _54670067) while F3'H binds with the inhibitor ketoconazole (CID_456201). The most powerful inhibitor (ketoconazole for F3'H) and activator (ascorbate for FLS) is determined by computing the thermodynamic binding free energy through MM_PBSA analysis. The current work provides wide-ranging structural and functional information about FLS and F3'H enzymes showing detailed molecular mechanism of kaempferol biosynthesis and its degradation and hence kaempferol enrichment. Finding of the present work opens up new possibilities for future research towards enrichment of kaempferol by using activator (ascorbate) for FLS and inhibitor (ketoconazole) for F3'H as well as for its large-scale production using in vitro approaches.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Quempferoles , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Cetoconazol , Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoles
12.
J Mol Struct ; 1272: 134160, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36128074

RESUMEN

The CD147 / Cyp A interaction is a critical pathway in cancer types and an essential factor in entering the COVID-19 virus into the host cell. Melittin acts as an inhibitory peptide in cancer types by blocking the CD147/ Cyp A interaction. The clinical application of Melittin is limited due to weak penetration into cancer cells. TAT is an arginine-rich peptide with high penetration ability into cells widely used in drug delivery systems. This study aimed to design a hybrid peptide derived from Melittin and TAT to inhibit CD147 /Cyp A interaction. An amino acid region with high anti-cancer activity in Melittin was selected based on the physicochemical properties. Based on the results, a truncated Melittin peptide with 15 amino acids by the GGGS linker was fused to a TAT peptide (nine amino acids) to increase the penetration rate into the cell. A new hybrid peptide analog(TM) was selected by replacing the glycine with serine based on random point mutation. Docking results indicated that the TM peptide acts as an inhibitory peptide with high binding energy when interacting with CD147 and the CypA proteins. RMSD and RMSF results confirmed the high stability of the TM peptide in interaction with CD147. Also, the coarse-grained simulation showed the penetration potential of TM peptide into the DOPS-DOPC model membrane. Our findings indicated that the designed multifunctional peptide could be an attractive therapeutic candidate to halter tumor types and COVID-19 infection.

13.
J King Saud Univ Sci ; 35(1): 102402, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36338939

RESUMEN

Objectives: We performed a virtual screening of olive secoiridoids of the OliveNetTM library to predict SARS-CoV-2 PLpro inhibition. Benchmarked molecular docking protocol that evaluated the performance of two docking programs was applied to execute virtual screening. Molecular dynamics stability analysis of the top-ranked olive secoiridoid docked to PLpro was also carried out. Methods: Benchmarking virtual screening used two freely available docking programs, AutoDock Vina 1.1.2. and AutoDock 4.2.1. for molecular docking of olive secoiridoids to a single PLpro structure. Screening also included benchmark structures of known active and decoy molecules from the DEKOIS 2.0 library. Based on the predicted binding energies, the docking programs ranked the screened molecules. We applied the usual performance evaluation metrices to evaluate the docking programs using the predicted ranks. Molecular dynamics of the top-ranked olive secoiridoid bound to PLpro and computation of MM-GBSA energy using three iterations during the last 50 ps of the analysis of the dynamics in Desmond supported the stability prediction. Results and discussions: Predictiveness curves suggested that AutoDock Vina has a better predictive ability than AutoDock, although there was a moderate correlation between the active molecules rankings (Kendall's correlation of rank (τ) = 0.581). Interestingly, two same molecules, Demethyloleuropein aglycone, and Oleuroside enriched the top 1 % ranked olive secoiridoids predicted by both programs. Demethyloleuropein aglycone bound to PLpro obtained by docking in AutoDock Vina when analyzed for stability by molecular dynamics simulation for 50 ns displayed an RMSD, RMSF<2 Å, and MM-GBSA energy of -94.54 ± 6.05 kcal/mol indicating good stability. Molecular dynamics also revealed the interactions of Demethyloleuropein aglycone with binding sites 2 and 3 of PLpro, suggesting a potent inhibition. In addition, for 98 % of the simulation time, two phenolic hydroxy groups of Demethyloleuropein aglycone maintained two hydrogen bonds with Asp302 of PLpro, specifying the significance of the groups in receptor binding. Conclusion: AutoDock Vina retrieved the active molecules accurately and predicted Demethyloleuropein aglycone as the best inhibitor of PLpro. The Arabian diet consisting of olive products rich in secoiridoids benefits from the PLpro inhibition property and reduces the risk of viral infection.

14.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36467615

RESUMEN

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

15.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36540698

RESUMEN

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

16.
Comput Struct Biotechnol J ; 20: 4984-5000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36097510

RESUMEN

Surfactant protein D (SP-D) is an essential component of the human pulmonary surfactant system, which is crucial in the innate immune response against glycan-containing pathogens, including Influenza A viruses (IAV) and SARS-CoV-2. Previous studies have shown that wild-type (WT) SP-D can bind IAV but exhibits poor antiviral activities. However, a double mutant (DM) SP-D consisting of two point mutations (Asp325Ala and Arg343Val) inhibits IAV more potently. Presently, the structural mechanisms behind the point mutations' effects on SP-D's binding affinity with viral surface glycans are not fully understood. Here we use microsecond-scale, full-atomistic molecular dynamics (MD) simulations to understand the molecular mechanism of mutation-induced SP-D's higher antiviral activity. We find that the Asp325Ala mutation promotes a trimannose conformational change to a more stable state. Arg343Val increases the binding with trimannose by increasing the hydrogen bonding interaction with Glu333. Free energy perturbation (FEP) binding free energy calculations indicate that the Arg343Val mutation contributes more to the increase of SP-D's binding affinity with trimannose than Asp325Ala. This study provides a molecular-level exploration of how the two mutations increase SP-D binding affinity with trimannose, which is vital for further developing preventative strategies for related diseases.

17.
Comput Struct Biotechnol J ; 20: 4667-4687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147668

RESUMEN

Cathepsin V is a human lysosomal cysteine peptidase with specific functions during pathological processes and is as such a promising therapeutic target. Peptidase inhibitors represent powerful pharmacological tools for regulating excessive proteolytic activity in various diseases. Cathepsin V is highly related to cathepsin L but differs in tissue distribution, binding site morphology, substrate specificity, and function. To validate its therapeutic potential and extend the number of potent and selective cathepsin V inhibitors, we used virtual high-throughput screening of commercially available compound libraries followed by an evaluation of kinetic properties to identify novel potent and selective cathepsin V inhibitors. We identified the ureido methylpiperidine carboxylate derivative, compound 7, as a reversible, selective, and potent inhibitor of cathepsin V. It also exhibited the most preferable characteristics for further evaluation with in vitro functional assays that simulate the processes in which cathepsin V is known to play an important role. Compound 7 exerted significant effects on cell proliferation, elastin degradation, and immune cell cytotoxicity. The latter was increased because compound 7 impaired conversion of immunosuppressive factor cystatin F to its active monomeric form. Taken together, our results present novel potent inhibitors of cathepsin V and provide new hit compounds for detailed development and optimization. Further, we demonstrate that cathepsin V is a potential target for new approaches to cancer therapy.

18.
Comput Struct Biotechnol J ; 20: 4185-4194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016712

RESUMEN

Melioidosis is a severe disease caused by the highly pathogenic gram-negative bacterium Burkholderia pseudomallei. Several studies have highlighted the broad resistance of this pathogen to many antibiotics and pointed out the pivotal importance of improving the pharmacological arsenal against it. Since γ-carbonic anhydrases (γ-CAs) have been recently introduced as potential and novel antibacterial drug targets, in this paper, we report a detailed characterization of BpsγCA, a γ-CA from B. pseudomallei by a multidisciplinary approach. In particular, the enzyme was recombinantly produced and biochemically characterized. Its catalytic activity at different pH values was measured, the crystal structure was determined and theoretical pKa calculations were carried out. Results provided a snapshot of the enzyme active site and dissected the role of residues involved in the catalytic mechanism and ligand recognition. These findings are an important starting point for developing new anti-melioidosis drugs targeting BpsγCA.

19.
Comput Struct Biotechnol J ; 20: 4025-4039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35983230

RESUMEN

Colorectal cancer (CRC) is a significant contributor to cancer-related deaths caused by an unhealthy lifestyle. Multiple studies reveal that viruses are involved in colorectal tumorigenesis. The viruses such as Human Cytomegalovirus (HCMV), Human papillomaviruses (HPV16 & HPV18), and John Cunningham virus (JCV) are known to cause colorectal cancer. The molecular mechanisms of cancer genesis and maintenance shared by these viruses remain unclear. We analysed the virus-host networks and connected them with colorectal cancer proteome datasets and extracted the core shared interactions in the virus-host CRC network. Our network topology analysis identified prominent virus proteins RL6 (HCMV), VE6 (HPV16 and HPV18), and Large T antigen (JCV). Sequence analysis uncovered short linear motifs (SLiMs) in each viral target. We used these targets to identify the antiviral drugs through a structure-based virtual screening approach. This analysis highlighted that temsavir, pimodivir, famotine, and bictegravir bind to each virus protein target, respectively. We also assessed the effect of drug binding using molecular dynamic simulations, which shed light on the modulatory effect of drug molecules on SLiM regions in viral targets. Hence, our systematic screening of virus-host networks revealed viral targets, which could be crucial for cancer therapy.

20.
Saudi J Biol Sci ; 29(5): 3822-3829, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844389

RESUMEN

Background and aim: Hertwig's Εpithelial Root Sheath (HΕRS) has a major function in the developing tooth roots. Earlier research revealed that it undergoes epithelial-mesenchymal transition, a vital process for the morphogenesis and complete development of the tooth and its surrounding periodontium. Few studies have demonstrated the role of HERS in cementogenesis through ΕMΤ. The background of this in-silico system biology approach is to find a hub protein and gene involved in the EMT of HERS that may uncover novel insights in periodontal regenerative drug targets. Materials and methods: The protein and gene list involved in epithelial-mesenchymal transition were obtained from literature sources. The protein interaction was constructed using STRING software and the protein interaction network was analyzed. Molecular docking simulation checks the binding energy and stability of protein-ligand complex. Results: Results revealed the hub gene to be DYRK1A(Hepcidin), and the ligand was identified as isoetharine. SΤRIΝG results showed a confidence cutoff of 0.9 in sensitivity analysis with a condensed protein interaction network. Overall, 98 nodes from 163 nodes of expected edges were found with an average node degree of 11.9. Docking results show binding energy of -4.70, and simulation results show an RMSD value of 5.6 Å at 50 ns. Conclusion: Isoetharine could be a potential drug for periodontal regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA