Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 207: 108386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280257

RESUMEN

Phosphorus (P) and water are crucial for plant growth, but their availability is challenged by climate change, leading to reduced crop production and global food security. In many agricultural soils, crop productivity is confronted by both water and P limitations. The diminished soil moisture decreases available P due to reduced P diffusion, and inadequate P availability diminishes tissue water status through modifications in stomatal conductance and a decrease in root hydraulic conductance. P and water display contrasting distributions in the soil, with P being concentrated in the topsoil and water in the subsoil. Plants adapt to water- and P-limited environments by efficiently exploring localized resource hotspots of P and water through the adaptation of their root system. Thus, developing cultivars with improved root architecture is crucial for accessing and utilizing P and water from arid and P-deficient soils. To meet this goal, breeding towards multiple advantageous root traits can lead to better cultivars for water- and P-limited environments. This review discusses the interplay of P and water availability and highlights specific root traits that enhance the exploration and exploitation of optimal resource-rich soil strata while reducing metabolic costs. We propose root ideotype models, including 'topsoil foraging', 'subsoil foraging', and 'topsoil/subsoil foraging' for maize (monocot) and common bean (dicot). These models integrate beneficial root traits and guide the development of water- and P-efficient cultivars for challenging environments.


Asunto(s)
Fósforo , Agua , Fósforo/metabolismo , Agua/metabolismo , Raíces de Plantas/metabolismo , Fitomejoramiento , Fenotipo , Suelo
2.
Plants (Basel) ; 11(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36079644

RESUMEN

Drought is one of the biggest concerns in agriculture due to the projected reduction of global freshwater supply with a concurrent increase in global food demand. Roots can significantly contribute to improving drought adaptation and productivity. Plants increase water uptake by adjusting root architecture and cooperating with symbiotic soil microbes. Thus, emphasis has been given to root architectural responses and root-microbe relationships in drought-resilient crop development. However, root responses to drought adaptation are continuous and complex processes and involve additional root traits and interactions among themselves. This review comprehensively compiles and discusses several of these root traits such as structural, physiological, molecular, hydraulic, anatomical, and plasticity, which are important to consider together, with architectural changes, when developing drought resilient crop varieties. In addition, it describes the significance of root contribution in improving soil structure and water holding capacity and its implication on long-term resilience to drought. In addition, various drought adaptive root ideotypes of monocot and dicot crops are compared and proposed for given agroclimatic conditions. Overall, this review provides a broader perspective of understanding root structural, physiological, and molecular regulators, and describes the considerations for simultaneously integrating multiple traits for drought tolerance and crop improvement, under specific growing environments.

3.
Plants (Basel) ; 4(2): 334-55, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27135332

RESUMEN

Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA