Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1370479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633454

RESUMEN

Silica aggregates at the endodermis of sorghum roots. Aggregation follows a spotted pattern of locally deposited lignin at the inner tangential cell walls. Autofluorescence microscopy suggests that non-silicified (-Si) lignin spots are composed of two distinct concentric regions of varied composition. To highlight variations in lignin chemistry, we used Raman microspectroscopy to map the endodermal cell wall and silica aggregation sites in sorghum roots grown hydroponically with or without Si amendment. In +Si samples, the aggregate center was characterized by typical lignin monomer bands surrounded by lignin with a low level of polymerization. Farther from the spot, polysaccharide concentration increased and soluble silicic acid was detected in addition to silica bands. In -Si samples, the main band at the spot center was assigned to lignin radicals and highly polymerized lignin. Both +Si and -Si loci were enriched by aromatic carbonyls. We propose that at silica aggregation sites, carbonyl rich lignin monomers are locally exported to the apoplast. These monomers are radicalized and polymerized into short lignin polymers. In the presence of silicic acid, bonds typically involved in lignin extension, bind to silanols and nucleate silica aggregates near the monomer extrusion loci. This process inhibits further polymerization of lignin. In -Si samples, the monomers diffuse farther in the wall and crosslink with cell wall polymers, forming a ring of dense lignified cell wall around their export sites.

2.
Polymers (Basel) ; 14(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36559753

RESUMEN

Plants conduct light from their aboveground tissues belowground to their root system. This phenomenon may influence root growth and perhaps serve to stimulate natural biological functions of the microorganisms associating with them. Here we show that light transmission in maize roots largely occurs within the endodermis, a region rich in suberin polyester biopolymers. Using cork as a natural resource rich in suberin polymers, we extracted, depolymerized, and examined light transmission in the visible and infrared regions. Suberin co-monomers dissolved in toluene showed no evidence of enhanced light transmission over that of the pure solvent in the visible light region and reduced light transmission in the infrared region. However, when these co-monomers were catalytically repolymerized using Bi(OTf)3, light transmission through suspended polymers significantly increased 1.3-fold in the visible light region over that in pure toluene, but was reduced in the infrared region.

3.
New Phytol ; 236(2): 385-398, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751382

RESUMEN

Genetic signature of climate adaptation has been widely recognized across the genome of many organisms; however, the eco-physiological basis for linking genomic polymorphisms with local adaptations remains largely unexplored. Using a panel of 218 world-wide Arabidopsis accessions, we characterized the natural variation in root suberization by quantifying 16 suberin monomers. We explored the associations between suberization traits and 126 climate variables. We conducted genome-wide association analysis and integrated previous genotype-environment association (GEA) to identify the genetic bases underlying suberization variation and their involvements in climate adaptation. Root suberin content displays extensive variation across Arabidopsis populations and significantly correlates with local moisture gradients and soil characteristics. Specifically, enhanced suberization is associated with drier environments, higher soil cation-exchange capacity, and lower soil pH; higher proportional levels of very-long-chain suberin is negatively correlated with moisture availability, lower soil gravel content, and higher soil silt fraction. We identified 94 putative causal loci and experimentally proved that GPAT6 is involved in C16 suberin biosynthesis. Highly significant associations between the putative genes and environmental variables were observed. Roots appear highly responsive to environmental heterogeneity via regulation of suberization, especially the suberin composition. The patterns of suberization-environment correlation and the suberin-related GEA fit the expectations of local adaptation for the polygenic suberization trait.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Raíces de Plantas/genética , Suelo
4.
Plant J ; 102(3): 431-447, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32027440

RESUMEN

Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin-type monomers, and consequent deposition of suberin-like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Perfilación de la Expresión Génica
5.
J Exp Bot ; 71(21): 6807-6817, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31504726

RESUMEN

Silica deposition in plants is a common phenomenon that correlates with plant tolerance to various stresses. Deposition occurs mostly in cell walls, but its mechanism is unclear. Here we show that metabolic processes control the formation of silica aggregates in roots of sorghum (Sorghum bicolor L.), a model plant for silicification. Silica formation was followed in intact roots and root segments of seedlings. Root segments were treated to enhance or suppress cell wall biosynthesis. The composition of endodermal cell walls was analysed by Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray analysis. Our results were compared with in vitro reactions simulating lignin and silica polymerization. Silica aggregates formed only in live endodermal cells that were metabolically active. Silicic acid was deposited in vitro as silica onto freshly polymerized coniferyl alcohol, simulating G-lignin, but not onto coniferyl alcohol or ferulic acid monomers. Our results show that root silica aggregates form under tight regulation by endodermal cells, independently of the transpiration stream. We raise the hypothesis that the location and extent of silicification are primed by the chemistry and structure of polymerizing lignin as it cross-links to the wall.


Asunto(s)
Sorghum , Pared Celular , Raíces de Plantas , Plantones , Dióxido de Silicio
6.
Ann Bot ; 120(5): 739-753, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28651339

RESUMEN

Background and Aims: Deposition of silica in plant cell walls improves their mechanical properties and helps plants to withstand various stress conditions. Its mechanism is still not understood and silica-cell wall interactions are elusive. The objective of this study was to investigate the effect of silica deposition on the development and structure of sorghum root endodermis and to identify the cell wall components involved in silicification. Methods: Sorghum bicolor seedlings were grown hydroponically with (Si+) or without (Si-) silicon supplementation. Primary roots were used to investigate the transcription of silicon transporters by quantitative RT-PCR. Silica aggregation was induced also under in vitro conditions in detached root segments. The development and architecture of endodermal cell walls were analysed by histochemistry, microscopy and Raman spectroscopy. Water retention capability was compared between silicified and non-silicified roots. Raman spectroscopy analyses of isolated silica aggregates were also carried out. Key Results: Active uptake of silicic acid is provided at the root apex, where silicon transporters Lsi1 and Lsi2 are expressed. The locations of silica aggregation are established during the development of tertiary endodermal cell walls, even in the absence of silicon. Silica aggregation takes place in non-lignified spots in the endodermal cell walls, which progressively accumulate silicic acid, and its condensation initiates at arabinoxylan-ferulic acid complexes. Silicification does not support root water retention capability; however, it decreases root growth inhibition imposed by desiccation. Conclusion: A model is proposed in which the formation of silica aggregates in sorghum roots is predetermined by a modified cell wall architecture and takes place as governed by endodermal development. The interaction with silica is provided by arabinoxylan-ferulic acid complexes and interferes with further deposition of lignin. Due to contrasting hydrophobicity, silicification and lignification do not represent functionally equivalent modifications of plant cell walls.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Dióxido de Silicio/química , Sorghum/crecimiento & desarrollo , Pared Celular/química , Raíces de Plantas/metabolismo , Sorghum/metabolismo
7.
Front Plant Sci ; 8: 438, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28400787

RESUMEN

Plants take up silicon as mono-silicic acid, which is released to soil by the weathering of silicate minerals. Silicic acid can be taken up by plant roots passively or actively, and later it is deposited in its polymerized form as amorphous hydrated silica. Major silica depositions in grasses occur in root endodermis, leaf epidermal cells, and outer epidermal cells of inflorescence bracts. Debates are rife about the mechanism of silica deposition, and two contrasting scenarios are often proposed to explain it. According to the passive mode of silicification, silica deposition is a result of silicic acid condensation due to dehydration, such as during transpirational loss of water from the aboveground organs. In general, silicification and transpiration are positively correlated, and continued silicification is sometimes observed after cell and tissue maturity. The other mode of silicification proposes the involvement of some biological factors, and is based on observations that silicification is not necessarily coupled with transpiration. Here, we review evidence for both mechanisms of silicification, and propose that the deposition mechanism is specific to the cell type. Considering all the cell types together, our conclusion is that grass silica deposition can be divided into three modes: spontaneous cell wall silicification, directed cell wall silicification, and directed paramural silicification in silica cells.

8.
Ann Bot ; 114(2): 271-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24948669

RESUMEN

BACKGROUND AND AIMS: Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. METHODS: Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. KEY RESULTS: The high Se treatment (5 µg g(-1)) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced 'water-soluble' Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. CONCLUSIONS: Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots.


Asunto(s)
Mercurio/metabolismo , Oryza/anatomía & histología , Oryza/metabolismo , Raíces de Plantas/anatomía & histología , Rizosfera , Selenio/farmacología , Disponibilidad Biológica , Cinética , Compuestos de Metilmercurio , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Suelo/química , Solubilidad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA