Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28625, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571608

RESUMEN

Rice fallow black gram is grown under the residual moisture situation as a relay crop in heavy texture montmorillonite clay soil under zero till condition. Since the crop is raised during post monsoon season, the crop often experiences terminal stress due to limited water availability and no rainfall. Surface irrigation in montmorillonite clay soil is determent to pulse crop as inundation causes wilting. Therefore, zero tilled rice fallow black gram has to be supplemented with micro irrigation at flowering stage (35 days after sowing) to alleviate moisture stress and to increase the productivity as well. Hence micro farm pond in a corner of one ha field was created to harvest the rain water during monsoon season and the same was utilized to supplement the crop with lifesaving irrigation through mobile sprinkler at flowering stage for the crop grown under conservation agriculture. Soil cracking is also the common phenomena of montmorillonite clay soil where evaporations losses would be more through crack surfaces. The present study was therefore conducted to study the changes in the soil physical properties, crop establishment and productivity in conjunction with mechanized sowing and harvest and supplemental mobile sprinkler irrigation. Sowing of black gram by broadcasting 10 days prior to the manual harvest of rice, manual drawn single row seed drill after the machine harvest of rice and sowing by broadcasting at 4 days prior to machine harvest of rice was experimented separately and in combination with lifesaving irrigation. Results indicated that the number of wheel passes and lifesaving irrigation had a very strong impact on soil penetration resistance and soil moisture. Combined harvester followed by no till seed drill increased the soil penetration resistance in all the layers (0-5 cm, 5-10 cm and 10-15 cm). Two passes of wheel increased the mean soil penetration resistance from 407 KPa to 502 KPa. The soil penetration resistance (0-5 cm) at harvest shown that black gram sown by manual broadcasting 10 days prior to manual harvest of paddy supplemented with life irrigation on 30 DAS reduced the soil penetration resistance from 690 Kpa to 500 Kpa, 740 Kpa to 600 Kpa and 760 Kpa to 620 Kpa respectively at 0-5 cm, 5-10 cm and 10-15 cm layer. In general, moisture depletion rate was rapid in the surface layer of 0-5 cm as compared to other layers of 5-10 cm and 10-15 cm up to 30 DAS (Flowering stage). The moisture content and the soil penetration resistance had an inverse relationship. The soil penetration resistance also had an inverse relationship with the root length in which the root length lowers as the soil penetration resistance increases. The soil crack measured at 60 DAS was deeper with no till seed drill (width of 3.94 cm and depth of 13.67 cm) which was mainly due to surface layer compaction. The relative water content, specific leaf weight and chlorophyll content were significantly improved through the supplemental irrigation given on 30 DAS irrespective of crop establishment methods. The results further indicated that compaction of ploughed layer in the moist soil due to combined harvester and no till seed drill had a negative impact on yield (457 kg ha-1), which was improved by 19.03 per cent due to increased soil moisture with supplemental irrigation. The mean yield increase across different treatments due to supplemental lifesaving irrigation through mobile sprinkler was 20.4 per cent.

2.
Plants (Basel) ; 10(8)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34451722

RESUMEN

Grasses have a segmental morphology. Compared to leaf development, data on root development at the phytomer level are scarce. Leaf appearance interval was recorded over time to allow inference about the age of segmental sites that later form roots. Hydroponically grown Lolium perenne cv. Aberdart tillers were studied in both spring and autumn in increasing and decreasing day length conditions, respectively, and dissected to define the development status of roots of known age on successive phytomers basipetally on the tiller axis. Over a 90-day observation period spring and autumn tillers produced 10.4 and 18.1 root bearing phytomers (Pr), respectively. Four stages of root development were identified: (0) main axis elongation (~0-10 days), (1) primary branching (~10-18 days), (2) secondary branching (~18-25 days), and (3) tertiary and quaternary branching without further increase in root dry weight. The individual spring roots achieved significantly greater dry weight (35%) than autumn roots, and a mechanism for seasonal shift in substrate supply to roots is proposed. Our data define a root turnover pattern likely also occurring in field swards and provide insight for modelling the turnover of grass root systems for developing nutrient efficient or stress tolerant ryegrass swards.

3.
J Ginseng Res ; 37(2): 254-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23717178

RESUMEN

Greenhouse and field experiments with American ginseng (Panax quinquefolius L.) stratified seed sown at depths of 10 to 100 mm were carried out to determine effects of seeding depth on seedling emergence, growth and development and to calculate optimum seeding depth. The time to 50% seedling emergence (E50) in the field increased linearly from 17 d at 20 mm seeding depth to 42.5 d at 80 mm. Seedling emergence and root weight (economic yield) at the end of the first year each increased quadratically with the increase of seeding depth. Maximum emergence and root yields were produced at sowing depths of 26.9 and 30.6 mm respectively. In a greenhouse pot experiment, increasing seeding depth from 10 to 100 mm increased partitioning of dry matter to leaves from 23.6% to 26.1%, to stems from 6.9% to 14.2%, and decreased dry matter to roots from 69.5% to 59.7%. Optimum seeding depth was 31.1 mm for a corresponding maximum root weight of 119.9 mg. A predictor equation [X (seeding depth, mm)=Y (seed weight, mg)/9.1+20.96] for seeding depth for ginseng, based on data for ten vegetable crops, their seed weights and suggested seeding depths, predicted a seeding depth of 28.3 mm for ginseng similar to that reported above for most pot and field experiments.

4.
Gene ; 526(2): 331-5, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23624393

RESUMEN

This study aimed to elucidate the genetics of the adult root system in elite Chinese hybrid rice. Several adult root traits in a recombinant inbred line (RIL) population of Xieyou 9308 and two backcross F1 (BCF1) populations derived from the RILs were phenotyped under hydroponic culture at heading stage for quantitative trait locus (QTL) mapping and other statistical analysis. There a total of eight QTLs detected for the root traits. Among of them, a pleiotropic QTL was repeatedly flanked by RM180 and RM5436 on the short arm of chromosome 7 for multiple traits across RILs and its BCF1 populations, accounting for 6.88% to 25.26% of the phenotypic variances. Only additive/dominant QTLs were detected for the root traits. These results can serve as a foundation for facilitating future cloning and molecular breeding.


Asunto(s)
Oryza/genética , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Cromosomas de las Plantas , Estudios de Asociación Genética , Ligamiento Genético , Fenotipo , Mapeo Físico de Cromosoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA