Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(27): e2401220, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38652510

RESUMEN

The development of single-system materials that exhibit both multicolor room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) with tunable after glow colors and channels is challenging. In this study, four metal-free carbon dots (CDs) are developed through structural tailoring, and panchromatic high-brightness RTP is achieved via strong chemical encapsulation in urea. The maximum lifetime and quantum yield reaches 2141 ms and 56.55%, respectively. Moreover, CDs-IV@urea, prepared via coreshell interaction engineering, exhibits a dual afterglow of red RTP and green TADF. The degree of conjugation and functional groups of precursors affects the binding interactions of the nitrogen cladding on CDs, which in turn stabilizes triplet energy levels and affects the energy gap between S1 and T1 (ΔEST) to induce multicolor RTP. The enhanced wrapping interaction lowers the ΔEST, promoting reverse intersystem crossing, which leads to phosphorescence and TADF. This strong coreshell interaction fully stabilizes the triplet state, thus stabilizing the material in water, even in extreme environments such as strong acids and oxidants. These afterglow materials are tested in multicolor, time, and temperature multiencryption as well as in multicolor in vivo bioimaging. Hence, these materials have promising practical applications in information security as well as biomedical diagnosis and treatment.

2.
Adv Sci (Weinh) ; 11(18): e2400781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552147

RESUMEN

Advancing a metal-free room temperature phosphorescent (RTP) material that exhibits multicolor emission, remarkable RTP lifetime, and high quantum yield still faces the challenge of achieving intersystem crossing between singly and triplet excited states, as well as the rapid decay of triplet excited states due to nonradiative losses. In this study, a novel strategy is proposed to address these limitations by incorporating o-phenylenediamine, which generates multiple luminescent centers, and long-chain polyacrylic acid to synthesize carbonized polymer dots (CPDs). These CPDs are then embedded in a rigid B2O3 matrix, effectively limiting nonradiative losses through the synergistic effects of polymer cross-linking and the rigid matrix. The resulting CPD-based materials exhibit remarkable ultralong phosphorescence in shades of blue and lime green, with a visible lifetime of up to 49 s and a high phosphorescence quantum yield. Simultaneously, this study demonstrates the practical applicability of these excellent material properties in anti-counterfeiting and information encryption.

3.
Sci Bull (Beijing) ; 69(9): 1237-1248, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458915

RESUMEN

Simultaneously achieving room-temperature phosphorescence (RTP) and multiple-stimuli responsiveness in a single-component system is of significance but remains challenging. Crystallization has been recognized to be a workable strategy to fulfill the above task. However, how the molecular packing mode affects the intersystem crossing and RTP lifetime concurrently remains unclear so far. Herein, four economic small-molecular compounds, analogues of the famous drug raloxifene (RALO), are facilely synthesized and further explored as neat single-component and stimuli-responsive RTP emitters via crystallization engineering. Thanks to their simple structures and high ease to crystallize, these raloxifene analogues function as models to clarify the important role of molecular packing in the RTP and stimuli-responsiveness properties. Thorough combination of the single-crystal structure analysis and theoretical calculations clearly manifests that the tight antiparallel molecular packing mode is the key point to their RTP behaviors. Interestingly, harnessing the controllable and reversible phase transitions of the two polymorphs of RALO-OAc driven by mechanical force, solvent vapor, and heat, a single-component multilevel stimuli-responsive platform with tunable emission color is established and further exploited for optical information encryption. This work would shed light on the rational design of multi-stimuli responsive RTP systems based on single-component organics.

4.
ACS Appl Mater Interfaces ; 16(9): 11730-11739, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407090

RESUMEN

Photoluminescent metal-organic frameworks (MOFs) have been a subject of considerable interest for many years. However, the regulation of excited states of MOFs at the single crystal level remains restricted due to a lack of control methods. The singlet-triplet emissive property can be significantly influenced by crystal conformational distortions. This review introduces an intelligent responsive MOF material, denoted as LIFM-SHL-3a, characterized by flexible C-S-C bonds. LIFM-SHL-3a integrates elastic structural dynamics with fluorescence and room temperature phosphorescence (RTP) modulation under heating conditions. The deformable carbon-sulfur bond essentially propels the distortion of molecular conformation and alters the stacking mode, as illustrated by single-crystal-to-single-crystal transformation detection. The deformation of flexible C-S-C bonds leads to different noncovalent interactions in the crystal system, thereby achieving modulation of the fluorescence (F) and RTP bands. In the final state structure, the ratio of fluorescence is 66.7%, and the ratio of RTP is 32.6%. This stands as a successful demonstration of modulating F/RTP within the dynamic MOF, unlocking potential applications in optical sensing and beyond. Especially, a PL thermometer with a relative sensitivity of 0.096-0.104%·K-1 in the range of 300-380 K and a H2S probe with a remarkably low LOD of 125.80 nM can be obtained using this responsive MOF material of LIFM-SHL-3a.

5.
Adv Mater ; 36(16): e2312439, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38281100

RESUMEN

Afterglow materials featuring long emission durations ranging from milliseconds to hours have garnered increasing interest owing to their potential applications in sensing, bioimaging, and anti-counterfeiting. Unfortunately, polymeric materials rarely exhibit afterglow properties under ambient conditions because of the rapid nonradiative decay rate of triplet excitons. In this study, hour-long afterglow (HLA) polymer films are fabricated using a facile molecular doping strategy. Flexible and transparent polymer films emitted a bright afterglow lasting over 11 h at room temperature in air, which is one of the best performances among the organic afterglow materials reported to date. Intriguingly, HLA polymer films can be activated by sunlight, and their cyan afterglow in air can be readily observed by the naked eye. Moreover, the HLA color of the polymer films could be tuned from cyan to red through the Förster resonance energy transfer mechanism. Their application in flexible displays and information storage has also been demonstrated. With remarkable advantages, including an hour-long and bright afterglow, tunable afterglow colors, superior flexibility and transparency, and ease of fabrication, the HLA polymer paves the way for the practical application of afterglow materials in the engineering sector.

6.
Anal Chim Acta ; 1282: 341930, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37923408

RESUMEN

Reports on using complementary colours for high-contrast ratiometric assays are limited to date. In this work, graphitized carbon nitride (g-C3N4) nanosheets and mercaptoethylamine (MEA) capped Mn-doped ZnS QDs were fabricated by liquid exfoliation of bulk g-C3N4, and by a coprecipitation and postmodification strategies, respectively. Mn-doped ZnS quantum dots were deposited onto g-C3N4 nanosheets through an electrostatic self-assembly to form new nanocomposites (denoted as Mn-ZnS QDs@g-C3N4). Mn-ZnS QDs@g-C3N4 can emit a pair of complementary colour light, namely, orange room-temperature phosphorescence (RTP) at 582 nm and blue fluorescence at 450 nm. After 2,4,6-trinitrotoluene (TNT) dosing into Mn-ZnS QDs@g-C3N4 aqueous solution, and pairing with MEA to generate TNT anions capable of quenching the emission of Mn-doped ZnS QDs, the fluorescence colours of the solution changed from orange to blue across white, exhibiting unusual high-contrast fluorescence images. The developed ratiometric chemosensor showed very good linearity in the range of 0-12 µM TNT with a limit of detection of 0.56 µM and an RSD of 6.4 % (n = 5). Also, the ratiometric probe had an excellent selectivity for TNT over other nitroaromatic compounds, which was applied in the ratiometric test paper to image TNT in water, and TNT sensing under phosphorescence mode to efficiently avoid background interference. A high-contrast dual-emission platform for selective ratiometric detection of TNT was therefore established.

7.
Angew Chem Int Ed Engl ; 62(34): e202306475, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37367201

RESUMEN

In recent years, pure organic room-temperature phosphorescence (RTP) with highly efficient and long-persistent afterglow has drawn substantial awareness. Commonly, spin-orbit coupling can be improved by introducing heavy atoms into pure-organic molecules. However, this strategy will simultaneously increase the radiative and non-radiative transition rate, further resulting in dramatic decreases in the excited state lifetime and afterglow duration. Here in this work, a highly symmetric bird-like structure tetraphenylene (TeP), and its three symmetrical halogenated derivatives (TeP-F, TeP-Cl and TeP-Br) are synthesized, while their RTP properties and mechanisms are systematically investigated by both theoretical and experimental approaches. As the results, the rigid, highly twisted conformation of TeP restricts the non-radiative processes of RTP and gives rise to the enhancement of electron-exchange, which can contribute to the RTP radiation process. Despite the faint RTP of the bromine and chlorine-substituted ones (TeP-Br, TeP-Cl), the fluoro-substituted TeP-F exhibited a long phosphorescent lifetime up to 890 ms, corresponding to an extremely long RTP afterglow over 8 s, which could be incorporated into the best series of non-heavy-atom RTP materials reported in previous literature.

8.
Angew Chem Int Ed Engl ; 61(12): e202109224, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35132762

RESUMEN

A series of ß-hydroxy-vinylimine boron compounds 1-7 have been reported to exhibit unique dual emission, consisting of fluorescence and room temperature phosphorescence (RTP) in solution. This finding triggered intensive research of RTP in ß-hydroxy-vinylimine boron derivatives. Herein, we show clear evidence that the associated dual emission, especially RTP, is caused by the experimental artifact, where bright emission intensity saturates the detection dynamic range of the fluorimeter.

9.
Front Chem ; 9: 781294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888296

RESUMEN

Recently, there has been remarkable progress of the host-guest doped pure organic room-temperature phosphorescence (RTP) materials. However, it remains a great challenge to develop highly efficient host-guest doping systems. In this study, we have successfully developed a heavy atom free pure organic molecular doped system (benzophenone-thianthrene, respectively) with efficient RTP through a simple host-guest doping strategy. Furthermore, by optimizing the doping ratios, the host-guest material with a molar ratio of 100:1 presented an efficient RTP emission with 46% quantum efficiency and a long lifetime of up to 9.17 ms under ambient conditions. This work will provide an effective way to design new organic doping systems with RTP.

10.
Polymers (Basel) ; 12(4)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252274

RESUMEN

Two types of naphthalimide derivatives were synthesized by introducing a carbazole group and an n-butyl, respectively, into the naphthalimide system. The electron-donating ability of two kinds of derivatives was investigated by the electrochemical method. These two types of derivatives were used as initiators for the polymerization of d and l-lactide polymerization. Here, the emission and UV-vis absorption serve as the main focus. Compared with solely donor-initiated polylactide (PLA), the PLA with a donor-acceptor structure has a more efficient phosphorescence emission, of which the longest phosphorescence lifetime is up to 407 ms. The experimental results reveal the existence of charge-transfer states in the donor-acceptor-ended polymer. Due to the role of charge-transfer states, a red phosphorescent polymer was developed. Theoretically, these desirable advantages render synthesized PLAs a potential candidate for bioimaging and anti-counterfeiting.

11.
Mikrochim Acta ; 186(1): 41, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30569376

RESUMEN

A method is described for the detection of Cu(II). It is based on the use of a room-temperature phosphorescent probe consisting of alginate-capped and manganese(II)-doped ZnS quantum dots. The carboxy groups at the surface of the probe strongly coordinate Cu(II) to form a complex. As a result, the 4T1-6A1 transition of the Mn(II) ions in the probe is quenched, and the long decay time (~2.1 ms in the unquenched state) is accordingly reduced. At excitation/emission wavelengths of 316/590 nm and a delay time of 0.1 ms, the probe shows a linear response in the 0.01 to 12 µM Cu(II) concentration range. The detection limit is 6.0 nM and the RSD is 3.2% (for n = 5). Graphical Abstract A two-step procedure is described to synthesize alginate capped manganese doped ZnS QDs. These coordinate with Cu(II) to form an absorbent complex and can be used as a phosphorescent probe for time-resolved detection of Cu(II).

12.
ACS Appl Mater Interfaces ; 10(15): 12262-12277, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29164859

RESUMEN

Involvement of clear photoluminescence (PL) mechanism in specific chemical structure is at the forefront of carbon dots (CDs). Supramolecular interaction exists in plenty of materials, offering an inherent way to administrate the optical and photophysical properties, especially in terms of newly developed polymer carbon dots (PCDs). However, supramolecular-interaction-derived PL regulation is always ignored in the shadow of many kinds of PL factors, and we still have a limited understanding on the distinct chemical structure and mechanism of supramolecular effect in PCDs. Herein, several distinct photoluminescent phenomena of PCDs under aqueous and solid state are reviewed in terms of supramolecular cross-linking, with highly emphasizing the importance of supramolecular cross-link-enhanced emission (SCEE) effects, and the regulated function of supramolecular interaction's intensity and types between PCDs for special PL behaviors of PCDs. In addition, we categorize the photoluminescent phenomena in PCDs into the following aspects: supramolecular cross-link-enhanced dilute-solution-state emission, concentration-controlled multicolor emission, supramolecular regulation for quenching-resistant solid-state fluorescence, as well as supramolecular cross-link-assisted room-temperature- phosphorescence (RTP) under solid states. Furthermore, the applications of PCDs in light-emitting diodes (LED), solar cells, and anticounterfeiting and data encryption, etc., are presented, based on the distinct supramolecular cross-link-regulated photoluminescent phenomena, especially the solid-state emission. Finally, a brief outlook is given, highlighting the currently existing problems and development direction of supramolecular cross-link-regulated emission in PCDs.

13.
Macromolecules ; 48(9): 2967-2977, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-26056421

RESUMEN

Dual emissive luminescence properties of solid-state difluoroboron ß-diketonate-poly(lactic acid) (BF2bdk-PLA) materials have been utilized as biological oxygen sensors. Dyes with red-shifted absorption and emission are important for multiplexing and in vivo imaging, thus hydroxyl-functionalized dinaphthoylmethane initiators and dye-PLA conjugates BF2dnm(X)PLA (X = H, Br, I) with extended conjugation were synthesized. The luminescent materials show red-shifted absorbance (~435 nm) and fluorescence tunability by molecular weight. Fluorescence colors range from yellow (~530 nm) in 10 - 12 kDa polymers to green (~490 nm) in 20 - 30 kDa polymers. Room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) are present under a nitrogen atmosphere. For the iodine-substituted derivative, BF2dnm(I)PLA, clearly distinguishable fluorescence (green) and phosphorescence (orange) peaks are present, making it ideal for ratiometric oxygen-sensing and imaging. Bromide and hydrogen analogues with weaker relative phosphorescence intensities and longer phosphorescence lifetimes can be used as highly sensitive, concentration independent, lifetime-based oxygen sensors or for gated emission detection. BF2dnm(I)PLA nanoparticles were taken up by T41 mouse mammary cells and successfully demonstrated differences in vitro ratiometric measurement of oxygen.

14.
Biosens Bioelectron ; 68: 556-562, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25643596

RESUMEN

A selective system was developed to detect heparin in aqueous solutions by using MPA(3-Mercaptopropionic Acid)-capped Mn-doped ZnS quantum dots (QDs)/polybrene (hexadimethrine bromide) hybrids as a sensitive room temperature phosphorescence (RTP) nanosensor. In this system, the RTP intensity of QDs was remarkably enhanced via electrostatic self-assembly after the addition of polybrene. The addition of heparin into the system was competitively bound to polybrene and enable to deprive it from the surface of QDs, as a result, the RTP intensity of Mn-doped ZnS QDs/polybrene hybrids was reduced with the increased of heparin concentration. Based on this effect, a selective system was proposed to detect heparin. Under the optimal conditions, the change of RTP intensity was proportional to the heparin concentration from 0.05 to 1.4 U mL(-1) (about 0.38-10.76 µg mL(-1)) and the limit of detection (LOD) was 0.021 U mL(-1) (about 0.16 µg mL(-1)). This proposed nanosensor is simple and relatively free of interference from coexisting substances, which can be applied to detect heparin in heparin injection and human serum. In addition, a new pathway was also provided based on the assembly of QDs with other cationic homopolymers for further design of biosensors and detection of biomolecules.


Asunto(s)
Técnicas Biosensibles , Heparina/aislamiento & purificación , Mediciones Luminiscentes , Heparina/química , Bromuro de Hexadimetrina/química , Humanos , Manganeso/química , Nanoestructuras/química , Puntos Cuánticos , Sulfuros/química , Temperatura , Compuestos de Zinc/química
15.
Biosens Bioelectron ; 52: 271-6, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24064476

RESUMEN

Quantum dots (QDs) nanohybrids are an effective route to obtain new property of materials, and are very significant for developing specific materials and improving the performance of existing QDs materials. The objectives of this work are to prepare MPA-capped Mn-doped ZnS QDs/CTAB nanohybrids (MPA: 3-mercaptopropionic acid; CTAB: cetyltrimethyl ammonium bromide) through electrostatic self-assembly, to investigate the formation mechanism and the Room-Temperature Phosphorescenee (RTP) changes, and to explore the possibility of their application in detection of rutin. As a result, MPA-capped Mn-doped ZnS QDs/CTAB nanohybrids greatly improve the rutin detection ability of QDs and provide an important method for developing more convenient and effective rutin detection sensor. The sensor for rutin gave a detection limit of 0.037 mg L(-1) and two linear ranges from 0.05 to 0.5 mg L(-1) and from 0.5 to 5 mg L(-1), and thus can be expanded to selective detection of other substances. Since the present QDs-based RTP method does not need deoxidants or other inducers as conventional RTP detection methods, and avoids interference from autofluorescence and the scattering light of the matrix that are encountered in spectrofluorometry, this method can be used to detect the content of rutin in body fluid.


Asunto(s)
Técnicas Biosensibles , Manganeso/química , Rutina/aislamiento & purificación , Sulfuros/química , Compuestos de Zinc/química , Nanopartículas/química , Puntos Cuánticos/química , Rutina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA