Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Transl Stroke Res ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980519

RESUMEN

Cerebral cavernous malformation (CCM) is a hemorrhagic cerebrovascular disease where lesions develop in the setting of endothelial mutations of CCM genes, with many cases also harboring somatic PIK3CA gain of function (GOF) mutations. Rapamycin, an mTORC1 inhibitor, inhibited progression of murine CCM lesions driven by Ccm gene loss and Pik3ca GOF, but it remains unknown if rapamycin is beneficial in the absence of induction of Pik3ca GOF. We investigated the effect of rapamycin at three clinically relevant doses on lesion development in the Ccm3-/-PDGFb-icreERPositive murine model of familial CCM disease, without induction of Pik3ca GOF. Lesion burden, attrition, and acute and chronic hemorrhaging were compared between placebo and rapamycin-treated mice. Plasma miRNome was compared to identify potential biomarkers of rapamycin response. Outlier, exceptionally large CCM lesions (> 2 SD above the mean lesion burden) were exclusively observed in the placebo group. Rapamycin, across all dosages, may have prevented the emergence of large outlier lesions. Yet rapamycin also appeared to exacerbate mean lesion burden of surviving mice when outliers were excluded, increased attrition, and did not alter hemorrhage. miR-30c-2-3p, decreased in rapamycin-treated mouse plasma, has gene targets in PI3K/AKT and mTOR signaling. Progression of outlier lesions in a familial CCM model may have been halted by rapamycin treatment, at the potential expense of increased mean lesion burden and increased attrition. If confirmed, this can have implications for potential rapamycin treatment of familial CCM disease, where lesion development may not be driven by PIK3CA GOF. Further studies are necessary to determine specific pathways that mediate potential beneficial and detrimental effects of rapamycin treatment, and whether somatic PIK3CA mutations drive particularly aggressive lesions.

2.
Prog Orthod ; 25(1): 33, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034361

RESUMEN

BACKGROUND: Orthodontic pain affects the physical and mental health of patients. The spinal trigeminal subnucleus caudalis (SPVC) contributes to the transmission of pain information and serves as a relay station for integrating orofacial damage information. Recently, glial cells have been found to be crucial for both acute and maintenance phases of pain. It has also been demonstrated that rho kinase (ROCK) inhibitors can manage different pain models by inhibiting glial cell activation. Here, we hypothesized that orthodontic pain is related to glial cells in the SPVC, and Fasudil, a representative rho/rock kinase inhibitor, can relieve orthodontic pain by regulating the function of glial cells and the related inflammatory factors. In this study, we constructed a rat model of tooth movement pain and used immunofluorescence staining to evaluate the activation of microglia and astrocytes. Quantitative real-time PCR was used to detect the release of related cytokines and the expression of pain-related genes in the SPVC. Simultaneously, we investigated the effect of Fasudil on the aforementioned indicators. RESULTS: In the SPVC, the expression of c-Fos peaked on day 1 along with the expression of OX42 (related to microglial activation), CD16 (a pro-inflammatory factor), and CD206 (an anti-inflammatory factor) on day 3 after tooth movement, followed by a gradual decrease. GFAP-staining showed that the number of activated astrocytes was the highest on day 5 and that cell morphology became complex. After Fasudil treatment, the expression of these proteins showed a downward trend. The mRNA levels of pro-inflammatory factors (IL-1ß and TNF-α) peaked on day 3, and the mRNA expression of the anti-inflammatory factor TGF-ß was the lowest 3 days after tooth movement. Fasudil inhibited the mRNA expression of pain-related genes encoding CSF-1, t-PA, CTSS, and BDNF. CONCLUSION: This study shows that tooth movement can cause the activation of glial cells in SPVC, and ROCK inhibitor Fasudil can inhibit the activation of glial cells and reduce the expression of the related inflammatory factors. This study presents for the first time the potential application of Fasudil in othodontic pain.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina , Neuroglía , Técnicas de Movimiento Dental , Animales , Técnicas de Movimiento Dental/métodos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Ratas , Neuroglía/efectos de los fármacos , Ratas Sprague-Dawley , Masculino , Microglía/efectos de los fármacos , Núcleo Caudal del Trigémino/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Modelos Animales de Enfermedad , Citocinas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Astrocitos/efectos de los fármacos
3.
Cells ; 13(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39056800

RESUMEN

Descemet's Stripping Only (DSO) is a surgical technique that utilizes the peripheral corneal endothelial cell (CEnC) migration for wound closure. Ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, has shown potential in DSO treatment; however, its mechanism in promoting CEnC migration remains unclear. We observed that ripasudil-treated immortalized normal and Fuchs endothelial corneal dystrophy (FECD) cells exhibited significantly enhanced migration and wound healing, particularly effective in FECD cells. Ripasudil upregulated mRNA expression of Snail Family Transcriptional Repressor (SNAI1/2) and Vimentin (VIM) while decreasing Cadherin (CDH1), indicating endothelial-to-mesenchymal transition (EMT) activation. Ripasudil activated Rac1, driving the actin-related protein complex (ARPC2) to the leading edge, facilitating enhanced migration. Ex vivo studies on cadaveric and FECD Descemet's membrane (DM) showed increased migration and proliferation of CEnCs after ripasudil treatment. An ex vivo DSO model demonstrated enhanced migration from the DM to the stroma with ripasudil. Coating small incision lenticule extraction (SMILE) tissues with an FNC coating mix and treating the cells in conjunction with ripasudil further improved migration and resulted in a monolayer formation, as detected by the ZO-1 junctional marker, thereby leading to the reduction in EMT. In conclusion, ripasudil effectively enhanced cellular migration, particularly in a novel ex vivo DSO model, when the stromal microenvironment was modulated. This suggests ripasudil as a promising adjuvant for DSO treatment, highlighting its potential clinical significance.


Asunto(s)
Movimiento Celular , Distrofia Endotelial de Fuchs , Quinasas Asociadas a rho , Humanos , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Distrofia Endotelial de Fuchs/patología , Distrofia Endotelial de Fuchs/tratamiento farmacológico , Isoquinolinas/farmacología , Sulfonamidas/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Corneal/efectos de los fármacos , Endotelio Corneal/metabolismo , Endotelio Corneal/patología , Lámina Limitante Posterior/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Queratoplastia Endotelial de la Lámina Limitante Posterior/métodos , Proliferación Celular/efectos de los fármacos , Modelos Biológicos , Cicatrización de Heridas/efectos de los fármacos
4.
Stem Cell Res Ther ; 15(1): 229, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075621

RESUMEN

BACKGROUND: Human mesenchymal stem cells originating from umbilical cord matrix are a promising therapeutic resource, and their differentiated cells are spotlighted as a tissue regeneration treatment. However, there are limitations to the medical use of differentiated cells from human umbilical cord matrix-mesenchymal stem cells (hUCM-MSCs), such as efficient differentiation methods. METHODS: To effectively differentiate hUCM-MSCs into hepatocyte-like cells (HLCs), we used the ROCK inhibitor, fasudil, which is known to induce endoderm formation, and gelatin, which provides extracellular matrix to the differentiated cells. To estimate a differentiation efficiency of early stage according to combination of gelatin and fasudil, transcription analysis was conducted. Moreover, to demonstrate that organelle states affect differentiation, we performed transcription, tomographic, and mitochondrial function analysis at each stage of hepatic differentiation. Finally, we evaluated hepatocyte function based on the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4 in mature HLCs. RESULTS: Fasudil induced endoderm-related genes (GATA4, SOX17, and FOXA2) in hUCM-MSCs, and it also induced lipid droplets (LDs) inside the differentiated cells. However, the excessive induction of LDs caused by fasudil inhibited mitochondrial function and prevented differentiation into hepatoblasts. To prevent the excessive LDs formation, we used gelatin as a coating material. When hUCM-MSCs were induced into hepatoblasts with fasudil on high-viscosity (1%) gelatin-coated dishes, hepatoblast-related genes (AFP and HNF4A) showed significant upregulation on high-viscosity gelatin-coated dishes compared to those treated with low-viscosity (0.1%) gelatin. Moreover, other germline cell fates, such as ectoderm and mesoderm, were repressed under these conditions. In addition, LDs abundance was also reduced, whereas mitochondrial function was increased. On the other hand, unlike early stage of the differentiation, low viscosity gelatin was more effective in generating mature HLCs. In this condition, the accumulation of LDs was inhibited in the cells, and mitochondria were activated. Consequently, HLCs originated from hUCM-MSCs were genetically and functionally more matured in low-viscosity gelatin. CONCLUSIONS: This study demonstrated an effective method for differentiating hUCM-MSCs into hepatic cells using fasudil and gelatin of varying viscosities. Moreover, we suggest that efficient hepatic differentiation and the function of hepatic cells differentiated from hUCM-MSCs depend not only on genetic changes but also on the regulation of organelle states.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina , Diferenciación Celular , Gelatina , Hepatocitos , Células Madre Mesenquimatosas , Cordón Umbilical , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Diferenciación Celular/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Gelatina/química , Gelatina/farmacología , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/citología , Cordón Umbilical/citología , Viscosidad , Células Cultivadas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
5.
Food Chem Toxicol ; 190: 114792, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849049

RESUMEN

Cisplatin is an effective chemotherapy agent against various solid malignancies; however, it is associated with irreversible bilateral sensorineural hearing loss, emphasizing the need for drug development to prevent this complication, with the current options being very limited. Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine-threonine protein kinase involved in various cellular processes, including apoptosis regulation. In this study, we used a transgenic zebrafish model (Brn3C: EGFP) in which hair cells within neuromasts are observed in green under fluorescent microscopy without the need for staining. Zebrafish larvae were exposed to cisplatin alone or in combination with various concentrations of Y-27632, a potent ROCK inhibitor. Hair cell counts, apoptosis assessments using the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assay, FM1-43FX labeling assay and behavioral analyses (startle response and rheotaxis) were performed to evaluate the protective effects of Y-27632 against cisplatin-induced ototoxicity. Cisplatin treatment reduced the number of hair cells in neuromasts, induced apoptosis, and impaired zebrafish larval behaviors. Y-27632 demonstrated a dose-dependent protective effect against cisplatin-induced hair cell loss and apoptosis. These findings suggest that Y-27632, as a ROCK inhibitor, mitigates cisplatin-induced hair cell loss and associated ototoxicity in zebrafish.


Asunto(s)
Amidas , Apoptosis , Cisplatino , Ototoxicidad , Piridinas , Pez Cebra , Animales , Cisplatino/toxicidad , Amidas/farmacología , Piridinas/farmacología , Ototoxicidad/prevención & control , Apoptosis/efectos de los fármacos , Animales Modificados Genéticamente , Antineoplásicos/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Larva/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Modelos Animales de Enfermedad
6.
Int Immunopharmacol ; 136: 112195, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38820965

RESUMEN

Proper hydration and the clarity of the cornea are maintained through the crucial function of the corneal endothelium. Inflammation of the corneal endothelium, known as endotheliitis, can disrupt endothelial function, resulting in alterations to vision. Corneal endotheliitis is characterised by corneal oedema, the presence of keratic precipitates, inflammation within the anterior chamber, and occasionally, limbal injection, neovascularisation, and the concurrent or overlapping presence of uveitis. The aetiology of this condition is diverse, predominantly viral, but it may also be drug-induced, result from bacterial or fungal infections, be associated with systemic diseases and procedures, or remain idiopathic with no identifiable cause. To date, no standardised protocol for the treatment of this ocular disease exists, and in severe cases, corneal transplantation may be required. A 31-year-old male was transferred to our hospital for the management of corneal endothelial decompensation resulting from corneal endotheliitis. Hormonal therapy and antiviral medications proved ineffective, rendering the patient a candidate for corneal transplantation. As a final measure, treatment with the ROCK inhibitor netarsudil was initiated. The patient demonstrated significant improvement in symptoms, and the inflammation was successfully managed after nine months. In this study, a novel approach employing ROCK inhibitor therapy was utilised for the treatment of corneal endotheliitis, leading to marked recovery during patient follow-up. This case report represents the inaugural application of the ROCK inhibitor netarsudil in managing corneal endothelial decompensation attributed to corneal endotheliitis. These findings suggest that this method warrants consideration as a potential novel treatment option for similar conditions.


Asunto(s)
Benzoatos , Endotelio Corneal , Queratitis , beta-Alanina , Quinasas Asociadas a rho , Humanos , Adulto , Masculino , Queratitis/tratamiento farmacológico , Queratitis/diagnóstico , Quinasas Asociadas a rho/antagonistas & inhibidores , Endotelio Corneal/patología , Benzoatos/uso terapéutico , beta-Alanina/análogos & derivados , beta-Alanina/uso terapéutico , Nitrilos/uso terapéutico , Edema Corneal/tratamiento farmacológico , Edema Corneal/etiología , Edema Corneal/diagnóstico , Resultado del Tratamiento
7.
Mol Neurobiol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561558

RESUMEN

Dysfunction of cerebral endothelial cells (CECs) has been implicated in the pathology of Alzheimer's disease (AD). Despite evidence showing cytotoxic effects of oligomeric amyloid-ß (oAß) and Tau (oTau) in the central nervous system, their direct effects on CECs have not been fully investigated. In this study, we examined the direct effects of oAß, oTau, and their combination on cell adhesion properties and inflammatory responses in CECs. We found that both oAß and oTau increased cell stiffness, as well as the p-selectin/Sialyl-LewisX (sLeX) bonding-mediated membrane tether force and probability of adhesion in CECs. Consistent with these biomechanical alterations, treatments with oAß or oTau also increased actin polymerization and the expression of p-selectin at the cell surface. These toxic oligomeric peptides also triggered inflammatory responses, including upregulations of p-NF-kB p65, IL-1ß, and TNF-α. In addition, they rapidly activated the RhoA/ROCK pathway. These biochemical and biomechanical changes were further enhanced by the treatment with the combination of oAß and oTau, which were significantly suppressed by Fasudil, a specific inhibitor for the RhoA/ROCK pathway. In conclusion, our data suggest that oAß, oTau, and their combination triggered subcellular mechanical alterations and inflammatory responses in CECs through the RhoA/ROCK pathway.

8.
Sci Rep ; 14(1): 9012, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641671

RESUMEN

To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.


Asunto(s)
Ingeniería de Tejidos , Quinasas Asociadas a rho , Femenino , Animales , Caballos , Células Cultivadas , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Endometrio/metabolismo , Células Epiteliales/metabolismo , Colágeno/metabolismo , Dinoprost/metabolismo
9.
Arthritis Res Ther ; 26(1): 31, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243295

RESUMEN

OBJECTIVE: Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by abnormal activation of the type I interferon (IFN) pathway, which results in tissue inflammation and organ damage. We explored the role of the RhoA GTPase in the type I IFN activation pathway to provide a potential basis for targeting GTPase signaling for the treatment of SLE. METHODS: Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls, and the mRNA expression levels of RhoA and IFN-stimulated genes were measured by SYBR Green quantitative reverse transcriptase-polymerase chain reaction. IFN-a-stimulated response element (ISRE)-luciferase reporter gene assays and Western blotting were conducted to assess the biologic function of RhoA. An enzyme-linked immunoassay (ELISA) measured C-X-C motif chemokine ligand 10 (CXCL10) protein expression. RESULTS: Our studies demonstrate that the expression of RhoA in the PBMCs of SLE subjects was significantly higher than in healthy controls and positively correlated with type I IFN scores and type I IFN-stimulated gene (ISGs) expression levels. SiRNA-mediated knockdown of RhoA and the RhoA/ROCK inhibitor Y27632 reduced the activity of the type I IFN-induced ISRE, the signal transducer and activator of transcription 1 (STAT-1) phosphorylation, and the expression of CXCL10 and 2'-5'-oligoadenylate synthetase 1 (OAS1). Finally, we verified that Y27632 could significantly down-regulate the OAS1 and CXCL10 expression levels in the PBMCs of SLE patients. CONCLUSION: Our study shows that RhoA positively regulates the activation of the type I IFN response pathway. Reducing the expression level of RhoA inhibits the abnormal activation of the type I IFN system, and the RhoA/ROCK inhibitor Y27632 decreases aberrant type I IFN signaling in SLE PBMCs, suggesting the possibility of targeting the RhoA GTPase for the treatment of SLE.


Asunto(s)
Amidas , Interferón Tipo I , Lupus Eritematoso Sistémico , Piridinas , Humanos , Leucocitos Mononucleares/metabolismo , GTP Fosfohidrolasas/metabolismo , Quinasas Asociadas a rho/metabolismo
10.
Exp Eye Res ; 238: 109745, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043763

RESUMEN

The epiretinal membrane is a fibrocontractile tissue that forms on the inner surface of the retina, causing visual impairment ranging from mild to severe, and even retinal detachment. Müller glial cells actively participate in the formation of this membrane. Current research is constantly seeking for new therapeutic approaches that aim to prevent or treat cellular dysfunctions involved in the progression of this common fibrosis condition. The Rho GTPases signaling pathway regulates several processes associated with the epiretinal membrane, such as cell proliferation, migration, and contraction. Rho kinase (ROCK), an effector of the RhoA GTPase, is an interesting potential therapeutic target. This study aimed to evaluate the effects of a ROCK inhibitor (Y27632) on human Müller cells viability, growth, cytoskeletal organization, expression of extracellular matrix components, myofibroblast differentiation, migration, and contractility. Müller cells of the MIO-M1 lineage were cultured and treated for different periods with the inhibitor. Viability was evaluated by MTT assay and trypan blue exclusion method, and growth was evaluated by growth curve and BrdU incorporation assay. The actin cytoskeleton was stained with fluorescent phalloidin, intermediate filaments and microtubules were analyzed with immunofluorescence for vimentin and α-tubulin. Gene and protein expression of collagens I and V, laminin and fibronectin were evaluated by rt-PCR and immunofluorescence. Chemotactic and spontaneous cell migration were studied by transwell assay and time-lapse observation of live cells, respectively. Cell contractility was assessed by collagen gel contraction assay. The results showed that ROCK inhibition by Y27632 did not affect cell viability, but decreased cell growth and proliferation after 72 h. There was a change in cell morphology and organization of F-actin, with a reduction in the cell body, disappearance of stress fibers and formation of long, branched cell extensions. Microtubules and vimentin filaments were also affected, possibly because of F-actin alterations. The inhibitor also reduced gene expression and immunoreactivity of smooth muscle α-actin, a marker of myofibroblasts. The expression of extracellular matrix components was not affected by the inhibitor. Chemotactic cell migration showed no significant changes, while cell contractility was substantially reduced. No spontaneous migration of MIO-M1 cells was observed. In conclusion, pharmacological inhibition of ROCK in Müller cells could be a potentially promising approach to treat epiretinal membranes by preventing cell proliferation, contractility and transdifferentiation, without affecting cell viability.


Asunto(s)
Membrana Epirretinal , Quinasas Asociadas a rho , Humanos , Actinas/metabolismo , Células Ependimogliales/metabolismo , Vimentina/metabolismo , Supervivencia Celular , Membrana Epirretinal/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo
11.
Res Sq ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37790522

RESUMEN

Objective: Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by abnormal activation of the type I interferon (IFN) pathway, which results in tissue inflammation and organ damage. We explored the role of the RhoA GTPase in the type I IFN activation pathway to provide a potential basis for targeting GTPase signaling for the treatment of SLE. Methods: Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls, and the mRNA expression levels of RhoA and IFN-stimulated genes were measured by SYBR Green quantitative reverse transcriptase-polymerase chain reaction. IFN-stimulated response element (ISRE)-luciferase reporter gene assays and Western blotting were conducted to asssess the biologic function of RhoA. An Enzyme-Linked Immunoassay (ELISA) measured C-X-C motif chemokine ligand 10(CXCL10)protein expression. Results: Our studies demonstrated that the expression of RhoA in the PBMCs of SLE subjects was significantly higher than healthy controls and positively correlated with type I IFN scores and type I IFN-stimulated gene (ISGs) expression levels. SiRNA-mediated knockdown of RhoA and the RhoA/ROCK inhibitor Y27632 reduced the activity of the type I IFN-induced ISRE, the signal transducer and activator of transcription 1 (STAT-1) phosphorylation, and the expression of CXCL10 and 2'-5'-oligoadenylate synthetase 1(OAS1). Finally,we verified that Y27632 could significantly down-regulate the OAS1 and CXCL10 expression levels in PBMCs of SLE patients. Conclusion: Our study shows that RhoA positively regulates the activation of the type I IFN response pathway. Reducing the expression level of RhoA inhibits the abnormal activation of the type I IFN system, and the RhoA/ROCK inhibitor Y27632 decreases aberrant type I IFN signaling in SLE PBMCs, suggesting the possibility of targeting the RhoA GTPase for the treatment of SLE.

12.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833857

RESUMEN

The impairment in microvascular network formation could delay the restoration of blood flow after acute limb ischemia. A high-content screen of a GSK-published kinase inhibitor library identified a set of ROCK inhibitor hits enhancing endothelial network formation. Subsequent kinase activity profiling against a panel of 224 protein kinases showed that two indazole-based ROCK inhibitor hits exhibited high selectivity for ROCK1 and ROCK2 isoforms compared to other ROCK inhibitors. One of the chemical entities, GSK429286, was selected for follow-up studies. We found that GSK429286 was ten times more potent in enhancing endothelial tube formation than Fasudil, a classic ROCK inhibitor. ROCK1 inhibition by RNAi phenocopied the angiogenic phenotype of the GSK429286 compound. Using an organotypic angiogenesis co-culture assay, we showed that GSK429286 formed a dense vascular network with thicker endothelial tubes. Next, mice received either vehicle or GSK429286 (10 mg/kg i.p.) for seven days after hindlimb ischemia induction. As assessed by laser speckle contrast imaging, GSK429286 potentiated blood flow recovery after ischemia induction. At the histological level, we found that GSK429286 significantly increased the size of new microvessels in the regenerating areas of ischemic muscles compared with vehicle-treated ones. Our findings reveal that selective ROCK inhibitors have in vitro pro-angiogenic properties and therapeutic potential to restore blood flow in limb ischemia.


Asunto(s)
Células Endoteliales , Quinasas Asociadas a rho , Ratones , Animales , Quinasas Asociadas a rho/metabolismo , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Isquemia/metabolismo , Flujo Sanguíneo Regional , Miembro Posterior/patología , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo
13.
Exp Eye Res ; 235: 109636, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37657529

RESUMEN

Meibomian gland dysfunction is one of the most common ocular diseases, with therapeutic treatment being primarily palliative due to our incomplete understanding of meibomian gland (MG) pathophysiology. To progress in vitro studies of human MG, this study describes a comprehensive protocol, with detailed troubleshooting, for the successful isolation, cultivation and cryopreservation of primary MG cells using biopsy-size segments of human eyelid tissue that would otherwise be discarded during surgery. MG acini were isolated and used to establish and propagate lipid-producing primary human MG cells. The primary cell viability during culture procedure was maintained through the application of Rho-associated coiled-coil containing protein kinase inhibitor (Y-27632, 10 µM) and collagen I from rat tails. Transcriptomic analysis of differentiated primary human MG cells confirmed cell origin and revealed high-level expression of many lipogenesis-related genes such as stearoyl-CoA desaturase (SCD), ELOVL Fatty Acid Elongase 1 (ELOVL1) and fatty acid synthase (FASN). Primary tarsal plate fibroblasts were also successfully isolated, cultured and cryopreserved. Established primary human MG cells and tarsal plate fibroblasts presented in this study have potential for applications in 3D models and bioengineered tissue that facilitate research in understanding of MG biology and pathophysiology.


Asunto(s)
Colágeno Tipo I , Glándulas Tarsales , Humanos , Animales , Ratas , Diferenciación Celular , Supervivencia Celular , Criopreservación , Inhibidores de Proteínas Quinasas
14.
Indian J Ophthalmol ; 71(7): 2756-2759, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37417116

RESUMEN

Purpose: Ripasudil is a class of drug which alters the trabecular meshwork to increase the aqueous outflow and has been shown to be effective in pseudoexfoliative glaucoma (PXF G). This study aimed at assessing the efficacy and safety profile of ripasudil as an adjunct treatment in patients with PXF G at maximal tolerated antiglaucoma medications. Methods: In this prospective, interventional study, 40 patients with PXF G were enrolled between May 2021 and Jan 2022. Ripasudil 0.4% was started as an adjunctive drug to the ongoing antiglaucoma medications. On follow-up visits at 1, 3, and 6 months, the visual acuity, intraocular pressure (IOP), anterior segment, and fundus findings were evaluated. The premedication and postmedication IOP values were compared by paired t-test, and a P-value <0.05 was considered statistically significant. Results: Average age at recruitment was 60.02 ± 8.74 years. Baseline premedication IOP was 25.375 ± 3.276 mmHg. IOP reduction at 6 months was found to be statistically significant in all patients, with the maximal response being 24.13%. Also, 87.5% (35/40) of patients reached target IOP or even lower IOP at the end of study. There was no statistically significant association between the PXF grade and IOP. However, the grade of inferior iridocorneal angle pigmentation was found to be higher in eyes with elevated IOP (P < 0.05). Only three patients developed conjunctival hyperemia as an adverse reaction, which was mild and transient. Conclusion: Ripasudil showed additional IOP-lowering effect with other antiglaucoma medications and exhibited no significant side effects.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Persona de Mediana Edad , Anciano , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Agentes Antiglaucoma , Estudios Prospectivos , Soluciones Oftálmicas/efectos adversos , Quinasas Asociadas a rho , Glaucoma/tratamiento farmacológico , Presión Intraocular , Resultado del Tratamiento
15.
Front Vet Sci ; 10: 1155048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483290

RESUMEN

In this study, it was hypothesized that the addition of an appropriate concentration of Y-27632 (a ROCK inhibitor) to the freezing extender prevents cryopreservation-induced apoptosis and improves embryonic development after in vitro fertilization (IVF). Semen samples were collected from five fertile Simmental bulls using an artificial vagina twice a week for 4 weeks. Selected samples were pooled and diluted with Tris-egg-yolk-glycerol (TEYG) extender containing different concentrations of Y-27632 (0, 10, 20, 30, and 40 µM) and then frozen in liquid nitrogen. After thawing, computer-assisted semen analysis (CASA), plasma membrane integrity, and acrosome intactness were evaluated in terms of morphological abnormalities, intracellular generation of reactive oxygen species (ROS), DNA fragmentation, phosphatidylserine (PS) externalization, and apoptotic-related gene expression. Finally, groups of frozen and thawed spermatozoa were used for bovine oocyte IVF. The results show that the semen extender at a concentration of 20 µM Y-27632 effectively improved total motility (TM), curvilinear velocity (VCL), as well as the plasma membrane and acrosome integrity compared to the control group (p < 0.05). Intracellular ROS levels were significantly (p < 0.05) lower in samples treated with 30 µM Y-27632 compared to the control specimen. Furthermore, supplementation of the semen extender with 20 µM Y-27632 resulted in more viable spermatozoa compared with the control group (p < 0.05). According to qRT-PCR results, the expression levels of BAX and CASPASE-9 genes in samples treated with 30 µM Y-27632 were significantly downregulated, while the expression of BCL2 was increased compared to the control (p < 0.05). The results of IVF demonstrated that the treatment of frozen-thawed spermatozoa with 20 µM Y-27632 increased blastocyst rates compared to the control group (p < 0.05). In conclusion, the addition of 20 µM Y-27632 into the freezing extender can improve the functionality and the fertilizing capacity of frozen spermatozoa due to its antioxidative and anti-apoptotic properties.

16.
Curr Eye Res ; 48(9): 826-835, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37216470

RESUMEN

PURPOSE: Glaucoma is a leading cause of blindness worldwide. Characteristic changes occur in the optic nerve and visual field of patients with glaucoma; optic nerve damage can be mitigated by lowering intraocular pressure. Treatment modalities include drugs and lasers; filtration surgery is necessary for patients with insufficient intraocular pressure reduction. Scar formation often contributes to glaucoma filtration surgery failure by increasing fibroblast proliferation and activation. Here, we examined the effects of ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, on postoperative scar formation in human Tenon's fibroblasts. METHODS: Collagen gel contraction assays were used to compare contractility activity among ripasudil and other anti-glaucoma drugs. The effect of Ripasudil in combination with other anti-glaucoma drugs and transforming growth factor-ß (TGF-ß), latanoprost and timolol-induce contractions were also tested in this study. Immunofluorescence and Western blotting were used to study the expression of factors relating scarring formation. RESULTS: Ripasudil inhibited contraction in collagen gel assay and reduced α-smooth muscle actin (SMA) and vimentin (scar formation-related factors) expression, which was inversely promoted by latanoprost, timolol or TGF-ß. Ripasudil also inhibited contraction on TGF-ß, latanoprost and timolol-induced contraction. Furthermore, we investigated the effects of ripasudil on postoperative scarring in a mouse model; ripasudil suppressed postoperative scar formation by altering the expression of α-SMA and vimentin. CONCLUSIONS: These results suggest that ripasudil, ROCK inhibitor may inhibit excessive fibrosis after glaucoma filtering surgery vis inhibition the transdifferentiation of tenon fibroblast into myofibroblast and may have a potential effect as anti-scarring for glaucoma filtration surgery.


Asunto(s)
Cirugía Filtrante , Glaucoma , Animales , Ratones , Humanos , Cicatriz/etiología , Cicatriz/prevención & control , Cicatriz/metabolismo , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/farmacología , Vimentina/metabolismo , Latanoprost/farmacología , Timolol , Agentes Antiglaucoma , Glaucoma/tratamiento farmacológico , Glaucoma/cirugía , Glaucoma/metabolismo , Fibroblastos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Colágeno/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
17.
Am J Ophthalmol Case Rep ; 30: 101839, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37096130

RESUMEN

Purpose: To report the safety, efficacy, and long-term outcome in a case of Fuchs endothelial corneal dystrophy (FECD) treated by Rho-associated protein kinase (ROCK)-inhibitor eye drops in combination with removal of degenerated corneal endothelial cells (CECs) subsequent to transcorneal freezing. Observations: A 52-year-old Japanese man diagnosed with early-stage FECD developed central corneal edema with decreased visual acuity (VA) in his left eye and was treated by ROCK inhibitor eye drops (Y-27632 10mM) q.i.d. for 1 week starting immediately subsequent to the removal of the damaged CECs via 2-mm-diameter transcorneal freezing in May 18, 2010. Before treatment, the best-corrected VA (BCVA) was 20/20 OD and 20/63 OS, and the central corneal thickness in the left eye was 643 µm and specular microscopy image at the central cornea was not detected due to edema. Corneal transparency recovered, and the BCVA improved to 20/20 within two weeks. At 12 years post treatment, the cornea in left eye remained transparent without corneal edema, and the CEC density at the central cornea was 1294 cells/mm2 and the central corneal thickness was 581 µm. The annual decrease of CECs at the central cornea was 1.1%, and VA was maintained at 20/25. Multiple guttae were observed in the peripheral region, but few in the central region were removed by transcorneal freezing treatment, and relatively normal and healthy CECs were observed. Conclusions and importance: The findings in this case suggest the potential long-term safety and efficacy of the medical therapy by ROCK-inhibitor eye drop for early-stage FECD.

18.
Oman J Ophthalmol ; 16(1): 94-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007228

RESUMEN

Rho-associated protein kinase inhibitor (ROCK) therapy for corneal endothelial dysfunction or damage other than glaucoma has been reported with few ocular side effects. We report reticular epithelial edema (REE) with netarsudil (0.02%) therapy in four cases with different clinical scenarios (three cases with corneal transplant and one case postcataract extraction). REE developed in all cases variably and cleared on cessation of netarsudil in three cases. One case was continued on netarsudil due to REE sparing the visual axis with no active ocular complaints. Partial clearance of stromal edema observed in all cases was correlated clinically to visual acuity considering existing comorbidities in an individual case.

19.
Stem Cell Reports ; 18(3): 618-635, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36868230

RESUMEN

Progenitor cells capable of self-renewal and differentiation in the adult human pancreas are an under-explored resource for regenerative medicine. Using micro-manipulation and three-dimensional colony assays we identify cells within the adult human exocrine pancreas that resemble progenitor cells. Exocrine tissues were dissociated into single cells and plated into a colony assay containing methylcellulose and 5% Matrigel. A subpopulation of ductal cells formed colonies containing differentiated ductal, acinar, and endocrine lineage cells, and expanded up to 300-fold with a ROCK inhibitor. When transplanted into diabetic mice, colonies pre-treated with a NOTCH inhibitor gave rise to insulin-expressing cells. Both colonies and primary human ducts contained cells that simultaneously express progenitor transcription factors SOX9, NKX6.1, and PDX1. In addition, in silico analysis identified progenitor-like cells within ductal clusters in a single-cell RNA sequencing dataset. Therefore, progenitor-like cells capable of self-renewal and tri-lineage differentiation either pre-exist in the adult human exocrine pancreas, or readily adapt in culture.


Asunto(s)
Diabetes Mellitus Experimental , Metilcelulosa , Humanos , Adulto , Ratones , Animales , Páncreas , Conductos Pancreáticos , Células Madre
20.
Cells ; 12(3)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36766688

RESUMEN

Primary keratinocytes including keratinocyte stem cells (KSCs) can be cultured as epidermal sheets in vitro and are attractive for cell and gene therapies for genetic skin disorders. However, the initial slow growth of freshly isolated keratinocytes hinders clinical applications. Rho-associated kinase inhibitor (ROCKi) has been used to overcome this obstacle, but its influence on the characteristics of KSC and its safety for clinical application remains unknown. In this study, primary keratinocytes were treated with ROCKi Y-27632 for six days (short-term). Significant increases in colony formation and cell proliferation during the six-day ROCKi treatment were observed and confirmed by related protein markers and single-cell transcriptomic analysis. In addition, short-term ROCKi-treated cells maintained their differentiation ability as examined by 3D-organotypic culture. However, these changes could be reversed and became indistinguishable between treated and untreated cells once ROCKi treatment was withdrawn. Further, the short-term ROCKi treatment did not reduce the number of KSCs. In addition, AKT and ERK pathways were rapidly activated upon ROCKi treatment. In conclusion, short-term ROCKi treatment can transiently and reversibly accelerate initial primary keratinocyte expansion while preserving the holoclone-forming cell population (KSCs), providing a safe avenue for clinical applications.


Asunto(s)
Queratinocitos , Quinasas Asociadas a rho , Células Cultivadas , Células Madre , Epidermis , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA