Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274127

RESUMEN

To solve the problems on resource utilization and environmental pollution of waste concrete and waste polypropylene (PP) plastics, the recycling of them into asphalt pavement is a feasible approach. Considering the high melting temperature of waste PP, this study adopted a thermal-and-mechanochemical method to convert waste PP into high-performance warm-mix asphalt modifiers (PPMs) through the hybrid use of dicumyl peroxide (DCP), maleic anhydride (MAH), and epoxidized soybean oil (ESO) for preparing an asphalt mixture (RCAAM) containing recycled concrete aggregate (RCA). For the prepared RCAAM containing PPMs, the mixing temperature was about 30 °C lower than that of the hot-mix RCAAM containing untreated PP. Further, the high-temperature property, low-temperature crack resistance, moisture-induced damage resistance, and fatigue resistance of the RCAAM were characterized. The results indicated that the maximum flexural strain of the RCAAM increased by 7.8~21.4% after using PPMs, while the sectional fractures of the asphalt binder were reduced after damaging at low temperature. The use of ESO in PPMs can promote the cohesion enhancement of the asphalt binder and also improve the high-temperature deformation resistance and fatigue performance of the RCAAM. Notably, the warm-mix epoxidized PPMA mixture worked better close to the hot-mix untreated PPMA mixture, even after the mixing temperature was reduced by 30 °C.

2.
Polymers (Basel) ; 16(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39065333

RESUMEN

Recycled asphalt pavement (RAP) mixtures are widely adopted due to their significant economic and social benefits from utilizing pavement recycling materials. This study incorporates basalt fibers (BF) and polyester fibers (PF) into plant-mixed hot recycled asphalt mixtures to analyze their enhancement effects on the high-temperature, low-temperature, and fatigue performance at different RAP content levels. Additionally, the study investigates the impact of fiber and RAP additions on the compaction characteristics of the mixtures using gyratory compaction tests, aiming to increase the RAP content of plant-mixed hot recycled asphalt mixtures. Experimental results demonstrate that at 30% and 50% RAP content levels, basalt fibers exhibit more pronounced enhancement effects on the performance of recycled asphalt mixtures compared to polyester fibers. Incorporating basalt fibers increases the fracture energy of recycled asphalt mixtures by 8.63% and 13.9%, and improves fatigue life by 154% and 135%, respectively. Moreover, the addition of both types of fibers increases compaction difficulty, with polyester fibers showing a more significant influence on the compaction energy index (CEI).

3.
Materials (Basel) ; 17(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730885

RESUMEN

The use of warm-mix recycling technology can reduce the mixing temperature and the secondary aging of binders in reclaimed asphalt pavement (RAP), which is one of the effective ways to recycle high-content RAP. In this study, the penetration, softening point, ductility, and viscosity were used to characterize the conventional physical properties of aged asphalt after regenerating, while a dynamic shear rheometer (DSR), force ductility tester (FDT), and atomic force microscope (AFM) were used to evaluate the rheological performance and micro-morphology of aged asphalt incorporating a new bio-based warm-mix rejuvenator (BWR) and a commercial warm-mix rejuvenator (ZJ-WR). The regeneration mechanism of warm-mix rejuvenators on aged asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the new bio-based warm-mix rejuvenator can restore the conventional physical properties, low-temperature performance, and micro-morphology of aged asphalt with an appropriate dosage, but it has a negative effect on high-temperature performance. In comparison with 2D area parameters, 3D roughness parameters were more accurate in evaluating the variation in micro-morphology of aged asphalt after regeneration. The FTIR analysis results indicate that both the new bio-based warm-mix rejuvenator and the commercial warm-mix rejuvenator regenerate aged asphalt by physical action, and AS=O and AC-H values are more reasonable than the AC=O value for the restoration evaluation of aged asphalt. And the new bio-based warm-mix rejuvenator has a better regeneration effect on the performance and micro-morphology of aged asphalt than the commercial warm-mix rejuvenator.

4.
Materials (Basel) ; 17(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730903

RESUMEN

This study endeavors to employ a balanced design methodology, aiming to equilibrate the resistance to rutting and cracking exhibited by hot in-place recycling asphalt mixtures containing a high dose of reclaimed asphalt pavement (RAP). The primary goal is to ascertain the optimal amount of new binder necessary for practical engineering applications, ensuring a balanced rutting and crack resistance performance of recycled asphalt mixtures. The investigation mainly employed wheel-tracking tests and semi-circular bending tests to assess the rutting and cracking performance of recycled asphalt mixtures with a different dose of RAP (in China, it is common to use RAP with 80% and 90% content as additives for preparing hot in-place recycling asphalt mixtures), and varying quantities of new binders (10%, 20%, and 30% of the binder content in the total RAP added). The results indicated that the addition of new binder reduced the resistance to rutting of the recycling asphalt mixtures but improved their resistance to cracking. Furthermore, for the recycling asphalt mixture with 80% RAP content aged for 5 days, the optimal new binder content is 1.52%, while the mixture with 90% RAP content requires 1.23% of new binder. After 10 days of aging, the optimal new binder content for the recycling asphalt mixture with 80% RAP content is 1.55%, while the mixture with 90% RAP content requires 1.28% of new binder.

5.
Polymers (Basel) ; 16(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475380

RESUMEN

To solve the problem of the poor abrasion resistance of concrete pavement surface mortar, this study substituted cement with equal amounts of styrene-butadiene rubber (SBR) latex and silica fume (SF) to investigate the effects of organic/inorganic material composite modification on the fluidity, drying shrinkage, mechanical properties, and abrasion resistance of cement mortar. Also in this study, the microstructure, product, and pore structure characteristics of the composite modified cement mortar were investigated using scanning electron microscope (SEM), X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and the Brunauer-Emmett-Teller (BET) method. This research found that the sole substitution of SF negatively impacted the mortar's fluidity and drying shrinkage yet enhanced its mechanical strength and abrasion resistance; the incorporation of SBR latex improved fluidity, reduced shrinkage, and increased flexural strength but adversely affected the compressive strength of the mortar. Additionally, the enhancement of the mortar's abrasion resistance with SBR latex was significantly greater than that with SF. When SBR latex and SF were used together as substitutes, the latex struggled to offset the negative impact of SF on mortar fluidity but effectively reduced shrinkage; SF compensated for the detrimental effect of the latex on compressive strength. Moreover, the primary role in enhancing the mortar's abrasion resistance was played by the latex. Microscopic tests showed that SBR latex and SF could increase the content of calcium silicate hydrate (C-S-H) gel, inhibit the formation of ettringite (AFt) and reduce carbonation, refine the pore size of cement mortar, and effectively improve the microstructure of mortar.

6.
Materials (Basel) ; 17(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38399193

RESUMEN

Urea-formaldehyde (UF) is a common shell material for self-healing microcapsules; however, the influence of urea-formaldehyde microcapsules (UFMs) on the road performance of bituminous mixtures and the sensitivity of their healing abilities remains unclear. In this paper, UFMs were prepared via in situ polymerization (ISP), followed by an investigation into the road performance of UFM self-healing bituminous mixtures through various tests, including wheel tracking, immersed Marshall, freeze-thaw splitting, low-temperature bending, and three-point bending fatigue tests. Subsequently, the impact of the damage degree, healing duration, and temperature on the self-healing property was discussed. The results indicated that incorporating 3 wt% UFMs into bitumen significantly improved the high-temperature stability and fatigue resistance of the bituminous mixture; for example, its dynamic stability and fatigue life could be increased by about 16.5% and 10%, respectively. However, it diminished the thermal crack resistance, as evidenced by decreases in bending tensile strength and strain by 3.7% and 10.1%, respectively. And it did not markedly improve the moisture susceptibility. Additionally, the maximum improvement observed in the healing rate was about 9%. Furthermore, the healing duration and temperature positively influenced the bituminous mixture's self-healing, whereas the degree of damage exerted a negative impact, with a relatively significant effect.

7.
Sci Total Environ ; 912: 169162, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072257

RESUMEN

In order to curb asphalt fume emissions during the heating process of styrene-butadiene-styrene (SBS) asphalt, three aldehyde modifiers [vanillin (X), citral (N) and amyl cinnamaldehyde (J)] were blended into SBS-modified asphalt to prepare aldehyde-modified asphalt in this paper. By collecting solid particles and volatile organic compounds (VOCs) in asphalt fumes to conduct relevant experiments, we have analyzed the fume suppression effect and suppression mechanism of aldehyde modified asphalt, and finally examined the road performance of aldehyde modifiers with the best fume suppression effect. It was found that the average VOCs concentration of aldehyde modified asphalt was reduced by about 78 % after 30 min. Aldehyde modifiers significantly reduce the compositional type and content of VOCs in SBS asphalt and reduce the risk of carcinogenicity by curbing the emission of substances such as benzene and phenol. J asphalt reduced solid particle emissions from SBS asphalt fume by 31.4 % and outperformed both X and N asphalt in inhibiting the escape of solid particulate matter and carcinogens from asphalt fume. Polymer networks and the cross-linking of chemical molecules are the main reasons for inhibiting the escape of asphalt fume molecules. In addition, the J modifier enhanced the high-temperature stabilization and water-stability properties of asphalt mixtures, but slightly reduced the low-temperature cracking resistance. The results showed that the three aldehyde modifiers were effective in inhibiting the volatilization of fumes from SBS modified asphalt. Among them, with the best effect of curbing fume emissions and a better road performance, J-modified asphalt is promising for the application in asphalt fume prevention and emissions reduction, and provides a new solution to reduce construction pollution and physical harm caused by asphalt fume in the construction process.

8.
Materials (Basel) ; 16(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38068103

RESUMEN

To examine the effect mechanism of rubber and diatomite on asphalt as well as the performance of asphalt mixtures for road applications, various composite-modified asphalts are prepared using rubber and diatomite. The performance of modified asphalts with various proportions is analyzed, and the optimal dosage ratio of modifiers is determined via the response surface approach. The microstructure of rubber-diatomite composite-modified asphalt is methodically examined using Fourier transform infrared spectroscopy and scanning electron microscopy. The road performance, aging resistance, and long-term stability of asphalt mixtures are evaluated through Marshall tests, wheel tracking tests, aging wheel tracking tests, freeze-thaw splitting tests, and cyclic freeze-thaw drying aging splitting tests. The obtained results reveal that asphalt with 22% rubber and 4% diatomite exhibits the best overall performance. The composite-modified asphalt essentially demonstrates the physical blending between rubber powder, diatomite, and base asphalt. The asphalt built from them formed a uniform and stable overall structure. Compared with rubber asphalt and rubber-SBS composite-modified asphalt, rubber-diatomite composite-modified asphalt exhibits superior road performance, including better aging resistance and long-term water stability in asphalt mixtures. This study can promote the further extensive application of rubber-diatomite-modified asphalt in road engineering, while providing new ideas for cost-saving and environmentally friendly asphalt modification.

9.
Materials (Basel) ; 16(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834625

RESUMEN

This study assessed the fundamental physical properties and chemical composition of three specific waste engine oil residue (WEORs) asphalt regenerants. Through dynamic shear rheometer and rolling thin-film oven tests, the performance of aged asphalt was evaluated using three key indicators. Thin-layer chromatography investigations probed the WEOR-induced changes in the aging asphalt components, leading to the creation of two novel asphalt regenerants, WEOR-H and WEOR-G. WEOR-G was developed from WEOR-1, liquid rubber, ultraviolet absorber, light shielding agent, and antioxidant, while WEOR-H was formulated from WEOR-2, aromatic oil, and liquid rubber. The study employed differential scanning calorimetry and conventional laboratory tests to analyze the road performance attributes of Ingevity J type regenerant (J), WEOR-G, and WEOR-H. The results indicated that WEORs increase the saturate and aromatic content in asphalt and partially replenish the missing lightweight components of aged asphalt, moderately improving the three key indicators, though the regenerative effect is restricted. Achieving a full restoration of component proportions within aged asphalt to their initial levels proved unattainable, and direct application of any of the three WEORs as asphalt regenerants is impractical. WEOR-H and WEOR-G demonstrated potential in enhancing aged asphalt binder road performance, outpacing three other WEORs. At a 14% dosage, WEOR-G and WEOR-H could increase the 10 °C ductility to 23.5 and 21.4 cm, respectively, effectively counterbalancing the insufficient ability of WEOR-1 and WEOR-2 to restore the low-temperature performance of aged asphalt. Among the regenerants, WEOR-G, possessing superior regenerative effects, the lowest glass transition temperature, and optimal low-temperature deformation resistance, emerged as the most efficacious. This inquiry furnishes vital data support for future applications of WEOR-G asphalt regenerant.

10.
Polymers (Basel) ; 15(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376277

RESUMEN

Semi-flexible pavement material (SFPM) combines the advantages and avoids the disadvantages of asphalt concrete flexible pavement and cement concrete rigid pavement. However, due to the problem of interfacial strength of composite materials, SFPM is prone to cracking diseases, which limits the further application of SFPM. Hence, it is necessary to optimize the composition design of SFPM and improve its road performance. In this study, the effects of cationic emulsified asphalt, silane coupling agent and styrene-butadiene latex on the improvement of SFPM performance were compared and analyzed. The influence of modifier dosage and preparation parameters on the road performance of SFPM was investigated by an orthogonal experimental design combined with principal component analysis (PCA). The best modifier and the corresponding preparation process were selected. On this basis, the mechanism of SFPM road performance improvement was further analyzed by scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) spectral analysis. The results show that adding modifiers can significantly enhance the road performance of SFPM. Compared to silane coupling agents and styrene-butadiene latex, cationic emulsified asphalt changes the internal structure of cement-based grouting material and increases the interfacial modulus of SFPM by 242%, allowing cationic emulsified asphalt-SFPM (C-SFPM) to exhibit better road performance. According to the results of the principal component analysis, C-SFPM has the best overall performance compared to other SFPMs. Therefore, cationic emulsified asphalt is the most effective modifier for SFPM. The optimal amount of cationic emulsified asphalt is 5%, and the best preparation process involves vibration at a frequency of 60 Hz for 10 min and 28 days of maintenance. The study provides a method and basis for improving the road performance of SFPM and a reference for designing the material composition of SFPM mixes.

11.
Polymers (Basel) ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112011

RESUMEN

To solve the problem of snow on steel bridge areas endangering traffic safety and low road traffic efficiency in winter, conductive gussasphait concrete (CGA) was prepared by mixing conductive phase materials (graphene and carbon fiber) into Gussasphalt (GA). First, through high-temperature rutting test, low-temperature bending test, immersion Marshall test, freeze-thaw splitting test and fatigue test, the high-temperature stability, low-temperature crack resistance, water stability and fatigue performance of CGA with different conductive phase materials were systematically studied. Second, the influence of different content of conductive phase materials on the conductivity of CGA was studied through the electrical resistance test, and the microstructure characteristics were analyzed via SEM. Finally, the electrothermal properties of CGA with different conductive phase materials were studied via heating test and simulated ice-snow melting test. The results showed that the addition of graphene/carbon fiber can significantly improve the high-temperature stability, low-temperature crack resistance, water stability and fatigue performance of CGA. The contact resistance between electrode and specimen can be effectively reduced when the graphite distribution is 600 g/m2. The resistivity of 0.3% carbon fiber + 0.5% graphene rutting plate specimen can reach 4.70 Ω·m. Graphene and carbon fiber in asphalt mortar construct a complete conductive network. The heating efficiency of 0.3% carbon fiber + 0.5% graphene rutting plate specimen is 71.4%, and the ice-snow melting efficiency is 28.73%, demonstrating good electrothermal performance and ice-snow melting effect.

12.
Polymers (Basel) ; 15(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37112104

RESUMEN

To give full play to the advantages of polyurethane as a binder, such as mixing at room temperature, short curing time, and high curing strength, polyurethane was used as the binder of a waste asphalt mixture, and the pavement performance of PCRM (Polyurethane Cold-Recycled Mixture) was analyzed. Firstly, the adhesion performance of polyurethane binder with new and old aggregates was evaluated using the adhesion test. Then, the mix proportion was designed according to the material characteristics, and the reasonable molding process, maintenance conditions, design indexes, and the optimal binder ratio were proposed. Secondly, the high-temperature stability, low-temperature crack resistance, water stability, and compressive resilient modulus of the mixture were evaluated through laboratory tests. Finally, the pore structure and microscopic morphology of polyurethane cold-recycled mixture were analyzed by industrial CT (Computerized Tomography) scanning, and the failure mechanism of polyurethane cold-recycled mixture was revealed. The test results show that the adhesion between polyurethane and RAP (Reclaimed Asphalt Pavement) is good, and the splitting strength of the mixture increases greatly when the ratio of glue to stone reaches 9%. Polyurethane binder has low sensitivity to temperature and poor water stability. With the increase of RAP content, the high-temperature stability, low-temperature crack resistance, and compressive resilient modulus of PCRM showed a decreasing trend. When the RAP content was less than 40%, the freeze-thaw splitting strength ratio of the mixture was improved. After the incorporation of RAP, the interface was more complex and there were many micron-scale holes, cracks, and other defects; after high-temperature immersion, the polyurethane binder appeared to show a certain degree of peeling at the holes of the RAP surface. After freeze-thaw, the polyurethane binder on the surface of the mixture produced many cracks. The study of polyurethane cold-recycled mixture is of great significance to realize green construction.

13.
Materials (Basel) ; 16(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36836971

RESUMEN

To make full use of the regenerative value of waste cooking oil, and to solve the environmental pollution and food security issues caused by waste cooking oil, waste cooking oil was suggested for use in asphalt. Waste cooking oil was used to adjust the performance of virgin and aged asphalt. This review article summarizes research progress on the performance of asphalt and asphalt mixture with waste cooking oil. The results showed that a moderate dosage of waste cooking oil will improved the low-temperature performance and construction workability of petroleum asphalt and aged asphalt. The mixing and compaction temperature of asphalt mixture with waste cooking oil are reduced by up to 15 °C. The rutting resistance and fatigue resistance of modified asphalt and modified asphalt mixture with waste cooking oil are damaged. After the addition of waste cooking oil in aged asphalt, the high-temperature performance and shear rheologic property of aged asphalt will be recovered. The regeneration effect of waste cooking oil on aged asphalt and aged asphalt mixture is close to that of a traditional regeneration agent, and the partial performance of asphalt or asphalt mixture with waste cooking oil is better. There is no chemical reaction between waste cooking oil and asphalt, but the asphalt component and absorption peak intensity of partial functional groups are changed. The light components content of asphalt binder is usually increased. Further research regarding the engineering application of asphalt mixture with waste cooking oil should be conducted. The method for improving the performance of asphalt and asphalt mixture with waste cooking oil will be mainly researched.

14.
Materials (Basel) ; 15(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36233989

RESUMEN

The reuse of steel slag, a large-scale solid waste from steel production, has good social and environmental benefits. The application of a steel slag asphalt mixture is mainly hindered by its volume expansion in water. The expansion of steel slag can be inhibited by oxalic acid. The expansion rate and adhesion of steel slag were investigated, and the immersion stability of steel slag and its asphalt mixture was evaluated by water erosion. By means of XRD, XRF, TG, SEM, etc., the influence mechanism of oxalic acid and water erosion on the properties of steel slag and its asphalt mixture was discussed. The results show that oxalic acid can not only inhibit the expansion of steel slag but also improve its crush resistance, with a reduction in the expansion rate of steel slag by 53%. Oxalic acid is able to leach alkaline metal elements, reducing its adhesion with asphalt. After 10 days of water erosion, the rutting stability and bending crack resistance of the treated steel slag mixture decreased by 37% and 43.2%, respectively. Calcium oxalate is generated on the surface of treated steel slag, which improves the surface compactness, effectively inhibits the expansion of steel slag caused by water erosion, and improves the performance of steel slag and its asphalt mixture. Water erosion can accelerate the hydration and shedding of calcium-containing substances on the surface of steel slag, reduce the adhesion of steel slag, and lead to degradation in the performance of steel slag and its asphalt mixture. Oxalic acid is able to effectively inhibit the expansion of steel slag, and the treated steel slag can be used as recycled aggregate in asphalt mixture, effectively solving the problems of road aggregate deficiency and environmental pollution caused by steel slag.

15.
Materials (Basel) ; 15(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079401

RESUMEN

In this paper, phase-change material (PCM) and ceramsite were used to increase the heat resistance of the asphalt mixture. The ceramsite asphalt mixture with PCM can bring a specific cooling effect to the road surface and alleviate the rapid deterioration at high temperature. Two phase-change materials, PCM-43 and PCM-48, were compared and selected as the heat absorption material of the asphalt mixture. It is found that PCM-43 has better thermal stability, temperature regulation performance, higher enthalpy value, and a less adverse effect on the rheological properties of asphalt. According to the road performance of the asphalt mixture, it suggests that the maximum content of ceramsite is 40%. The specific heat capacity of asphalt mixtures was studied by the method of the insulation bucket test, and the thermal conductivity coefficient of asphalt mixtures was tested by a thermal conductivity instrument. The results show that the specific heat capacity and thermal conductivity of the asphalt mixture can be reduced by adding PCM and ceramsite. The effect of ceramsite asphalt concrete with PCM on the temperature field of road structure was further analyzed by finite element method. Due to the thermal resistance of ceramsite in the upper layer, the cooling range and depth in the middle and lower surface layers can be improved. Meanwhile, the heat absorption of phase-change material can alleviate the heating phenomenon of the upper layer. Therefore, ceramsite asphalt concrete with PCM is effective for decreasing the high temperatures in the asphalt pavements.

16.
Materials (Basel) ; 15(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35888472

RESUMEN

Circular utilization of reclaimed asphalt pavement (RAP) has received extensive attention for its economic and environmental benefits. The application of recycled asphalt mixtures (RAM) in the upper layer of asphalt pavement faces the issue of inferior anti-slip performance and durability. This study aims to recycle steel slag as virgin aggregates in RAM and quantitatively evaluate the service performance of RAM with steel slag. Steel slag and basalt RAM were firstly fabricated and the five different RAP contents were involved. Then tests of Marshall stability, indirect tensile strength and Cantabro spatter loss were conducted to investigate the moisture susceptibility of RAM. Moreover, their high temperature stability, crack resistance and skid resistance were characterized. Indirect tensile fatigue test combined with Hamburg wheel tracking test were carried out to discuss the durability of RAM. The comprehensive performance of RAM with steel slag were quantitatively assessed based on an improved radar chart evaluation method. The results show that involving steel slag reveals a remarkable enhancement function on water stability, high and low temperature performance, skid resistance and fatigue resistance of RAM. Steel slag RAM with 50% RAP content demonstrates a rutting depth of 7.60 mm and a creep slope of 2.54 × 10-4, indicating its superior durability in high temperature and water environment. Compared with the comprehensive evaluation function of 0.5336 for basalt RAM with 30% RAP dosage, steel slag RAM reaches 0.7801, which represents its preferable road performance.

17.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35808661

RESUMEN

The massive application of chloride salts has a direct effect on the corrosion of structures and vehicles and decreases durability as well as road pavement damage. A novel slow-release deicer with a core-shell structure was prepared to reduce the salts' impacts, subsequently characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). The conductivity evaluation, moisture absorption, and the snow or ice melting performance of the deicer were also tested. The core-shell deicer with different replacement rates was used to prepare the deicing asphalt mixture based on the equivalent volume replacement method. In this study, the high- and low-temperature performance, moisture damage resistance, and snow or ice melting capacity of mixtures were evaluated in the laboratory. The results show that the low-temperature and moisture stability performances decreased, and high-temperature performance improved, as the content of the core-shell deicer was increased. It is confirmed that the replacement rate of the deicer filler should be lower than 75% to meet the specification requirements. The prepared deicing asphalt mixture has good snow and ice melting performance and can reduce the bonding strength between ice and pavement surface. Durability and cost-benefit analysis are expected in further investigations.

18.
Polymers (Basel) ; 14(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35808761

RESUMEN

In order to produce a high-viscosity asphalt and mixtures that can be used for ultra-thin overlays, high contents of Styrene-butadiene-styrene (SBS, 5%, 6%, 7%), styrene butadiene rubber (SBR, 1%, 2%, 3%) and micro carbon fiber (MCF, 0.8%) were used to modify conventional asphalt to prepare high-viscosity modified asphalt suitable for this purpose. The performance of the modified asphalts was evaluated by conventional index, kinematic viscosity, dynamic shear rheological test (DSR), multiple stress creep recovery test (MSCR), and bending beam rheometer test (BBR). The road performance of the modified asphalt mixtures was evaluated by high-temperature rutting, low-temperature bending, freeze-thaw splitting, fatigue, speckle, anti-skid, and water seepage tests. The results show that increasing the content of SBS can improve the high-temperature deformation resistance, low-temperature failure strain, kinematic viscosity, and viscosity toughness of modified asphalt, and the optimum content of SBS was 6%. SBR can improve the high-temperature performance, kinematic viscosity, and water damage resistance of modified asphalt, and the optimum dosage was 2%. Compared with 5% SBS-modified asphalt mixture, the dynamic stability, low-temperature failure strain, and freeze-thaw splitting strength ratio of 6% SBS + 0.8% MCF composite-modified asphalt mixture were increased by 48.7%, 24.7%, and 5.2% respectively. Compared with the 5% SBS-modified asphalt, the same characteristics of the 2% SBR + 5% SBS + 0.8% MCF composite-modified asphalt increased by 127.1%, 13.5%, and 5.5%, respectively. Compared with 5% SBS-modified asphalt, the fatigue performance of 6% SBS + 0.8% MCF-modified asphalt was improved by 32.2%. The kinematic viscosity of 6% SBS + 0.8% MCF and 5% SBS + 0.8% MCF + 2% SBR modified asphalt met the performance requirements of high-viscosity asphalt and had excellent road performance. It can be applied to ultra-thin overlays to optimize its adhesion with the original pavement.

19.
Materials (Basel) ; 15(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35744369

RESUMEN

Temperature segregation during the paving of asphalt pavements is one of the causes of asphalt pavement distress. Therefore, controlling the paving temperature is crucial in the construction of asphalt pavements. To quickly evaluate the road performance of asphalt mixtures during paving, in this work, we used unmanned aerial vehicle infrared thermal imaging technology to monitor the construction work. By analyzing the temperature distribution at the paving site, and conducting laboratory tests, the relationship between the melt temperature, high-temperature stability, and water stability of the asphalt mix was assessed. The results showed that the optimal temperature measurement height for an unmanned aerial vehicle (UAV) with an infrared thermal imager was 7-8 m. By coring the representative temperature points on the construction site and then conducting a Hamburg wheel tracking (HWT) test, the test results were verified through the laboratory test results in order to establish a prediction model for the melt temperature and high-temperature stability of y = 10.73e0.03x + 1415.78, where the predictive model for the melt temperature and water was y = -19.18e-0.02x + 98.03. The results showed that using laboratory tests combined with UAV infrared thermography could quickly and accurately predict the road performance of asphalt mixtures during paving. We hope that more extensive evaluations of the roadworthiness of asphalt mixtures using paving temperatures will provide reference recommendations in the future.

20.
Polymers (Basel) ; 14(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566853

RESUMEN

The study aims to analyze the feasibility of proposing waste cooking oil and industrial waste furfural residue as raw materials to prepare bio-asphalt as partial substitutes for petroleum asphalt, so as to reduce the cost of pavement construction and decrease the consumption of non-renewable resources. In this study, 90# petroleum asphalt was partially substituted with the bio-asphalt in different proportions to prepare biomass-modified petroleum asphalt, the performance of which was first evaluated based on three indices: penetration, softening point, and ductility. Comparison of the crystal structures of the bio-asphalt and furfural residue were enabled by X-ray diffraction, and the blending mechanism and microscopic morphologies of the biomass-substituted asphalt mixtures were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The results showed that the bio-asphalt was hydrophobic and exhibited excellent compatibility with 90# petroleum asphalt. The partial substitution of petroleum asphalt with bio-asphalt improved the low-temperature crack resistance of the asphalt by adversely affecting the high-temperature stability of the asphalt; however, when the bio-asphalt content was 8 wt.%, the performance parameters of the biomass-modified asphalt met the requirements of the 90# petroleum asphalt standard.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA