Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Turk J Chem ; 48(4): 568-581, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296788

RESUMEN

Both environmental and economic disadvantages of using petroleum-based products have been forcing researchers to work on environmentally friendly, sustainable, and economical alternatives. The purpose of this study is to optimize the solvothermal liquefaction process of grape pomace using response surface methodology coupled with a central composite design. After investigating the physicochemical properties of the liquified products (biopolyol) in detail, a bio-based rigid polyurethane foam (RPUF) was synthesized and characterized. The hydroxyl and acid numbers and viscosity values of all the biopolyols were analyzed. According to variance analysis results (%95 confidence range), both the reaction temperature and catalyst loading were determined as significant parameters on the liquefaction yield (LY). The model was validated experimentally in the following reaction conditions: 4.25% catalyst loading, 50 min reaction time, and 165 °C reaction temperature, which yields an LY of 81.3%. The biopolyols produced by the validation experiment display similar characteristics (hydroxyl number: 470.5 mg KOH/g; acid number: 2.31 mg KOH/g; viscosity: 1785 cP at 25 °C) to those of commercial polyols widely preferred in the production of polyurethane foam. The physicochemical properties of bio-based foam obtained from the biopolyol were determined and the thermal conductivity, closed-cell content, apparent density, and compressive strength values of bio-based RPUF were 31.3 mW/m·K, 71.1%, 33.4 kg/m3, and 105.3 kPa, respectively.

2.
Sci Rep ; 14(1): 19805, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191843

RESUMEN

The ecological benefits and concerns surrounding fossil fuels had led to increased interest in bio-based rigid polyurethane foam (RPUF). Nonetheless, due to its flammability, it had limited application in various fields. To solve this problem, a green bio-flame retardant, cobalt hydroxystannate (CoSn(OH)6), was prepared and compounded with montmorillonite (MMT) and chick feather protein (CF), and applied to RPUF, which not only realized the regeneration of resources, but also provided RPUF with better thermal stability, flame retardancy and smoke suppression properties. The experimental results showed that when 3 wt% CoSn(OH)6 was added, the RPUF (CF1/MMT3/Co3) had the greatest activation energy. In addition, the peak heat release rate (PHRR) and total heat release (THR) of CF1/MMT3/Co3 decreased by 12.73%, and 11.16% respectively, compared with no CoSn(OH)6. In addition, its Ds decreased by 28.9% and the light transmittance increased by 17.6% compared with the RPUF without CoSn(OH)6. At the same time, its peak smoke production rate (PSPR) and the total smoke release (TSR) decreased by 25% and 18%. And CF1/MMT3/Co3 also had the lowest fire risk evaluation index. This study presented possibilities for practical utilization of the RPUF substances founded on bio-based flame inhibitors.

3.
Molecules ; 29(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125111

RESUMEN

Rigid polyurethane foam (RPUF) is widely utilized in construction and rail transportation due to its lightweight properties and low thermal conductivity, contributing to energy conservation and emission reduction. However, the inherent flammability of RPUF presents significant challenges. Delaying the time to ignition and preventing flame spread post-combustion is crucial for ensuring sufficient evacuation time in the event of a fire. Based on this principle, this study explores the efficacy of using potassium salts as a catalyst to promote the self-cleavage of RPUF, generating substantial amounts of CO2, thereby reducing the local oxygen concentration and delaying ignition. Additionally, the inclusion of a reactive flame retardant (DFD) facilitates the release of phosphorus-oxygen free radicals during combustion, disrupting the combustion chain reaction and thus mitigating flame propagation. Moreover, potassium salt-induced catalytic carbonization and phosphorus derivative cross-linking enhance the condensed phase flame retardancy. Consequently, the combined application of potassium salts and DFD increases the limiting oxygen index (LOI) and reduces both peak heat release rate (PHRR) and total heat release (THR). Importantly, the incorporation of these additives does not compromise the compressive strength or thermal insulation performance of RPUF. This integrated approach offers a new and effective strategy for the development of flame retardant RPUF.

4.
Polymers (Basel) ; 16(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125147

RESUMEN

Isocyanates are critical components that affect the crosslinking density and structure of polyurethane (PU) foams. However, due to the cost and hazardous nature of the precursor for isocyanate synthesis, there is growing interest in reducing their usage in polyurethane foam production-especially in rigid PU foams (RPUF) where isocyanate is used in excess of the stoichiometric ratio. In this study, lignin-containing nanocellulose fibrils (LCNF) were explored as mechanical reinforcements for RPUF with the goal of maintaining the mechanical performance of the foam while using less isocyanate. Different amounts of LCNF (0-0.2 wt.%) were added to the RPUF made using isocyanate indices of 1.1, 1.05, 1.0, and 0.95. Results showed that LCNF served as a nucleating agent, significantly reducing cell size and thermal conductivity. LCNF addition increased the crosslinking density of RPUF, leading to enhanced compressive properties at an optimal loading of 0.1 wt.% compared to unreinforced foams at the same isocyanate index. Furthermore, at the optimal loading, LCNF-reinforced foams made at lower isocyanate indices showed comparable stiffness and strength to unreinforced foams made at higher isocyanate indices. These results highlight the reinforcing potential of LCNF in rigid polyurethane foams to improve insulation and mechanical performance with lower isocyanate usage.

5.
Polymers (Basel) ; 16(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125255

RESUMEN

Ammonium polyphosphate (APP) and self-made nickel phytate (PANi) were used as modified materials to prepare green biomass rigid polyurethane foam (RPUF). The flame retardancy, thermal stability, smoke toxicity and mechanical properties of the modified RPUF were investigated by limiting oxygen index (LOI), a cone calorimetry (CONE) test, thermogravimetric analysis and a compression test. The results showed that the RPUF with 10 wt% APP (PANi/APP10) had the highest LOI of 26.5%. Its peak heat release rate (PHRR) and total heat release (THR) were reduced by 29.64% and 24.05% compared with PANi/APP0 without APP. And its smoke production rate (SPR) and total smoke release (TSR) decreased by 33.14% and 19.88%, respectively. Compared with pure RPUF, the compressive strength of PANi/APP10 was increased by 50%, mainly because APP itself was an ultra-fine powder, which was better compatible with the matrix and improved the hardness of the material. The results showed that the synergistic effect of the gas phase and the condensed phase mechanism could effectively improve the flame-retardant effect. The current research results provided a new strategy for the preparation of green and low-toxicity RPUF.

6.
Sci Rep ; 14(1): 16651, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030238

RESUMEN

A bio-based flame retardant nickel phytate (PA-Ni) was synthesized and combined with soybean oil-based polyol (SO) to create a green rigid polyurethane foam (RPUF) with enhanced compressive strength, good thermal stability and flame retardant. The results showed that the RPUF-SO2/Ni3 with 3 wt% PA-Ni had the highest initial and termination temperature, maximum thermal decomposition rate temperature and carbon residue, and better thermal stability. Its limiting oxygen index was increased by 2.6% compared with RPUF-SO2 without PA-Ni added, and the peak heat release rate (PHRR) and total heat release rate (THR) were reduced by 14.92% and 19.92%, respectively. In addition, RPUF-SO2/Ni3 had the lowest Ds under the conditions of flame (18.90) and flameless (22.41), and had the best smoke suppression effect. And the compressive strength of RPUF-SO/Ni3 was significantly enhanced by the addition of PA-Ni. The results show that the improvement of flame retardancy of RPUF is mainly the result of the combined effect of gas-phase and condensed-phase flame retardancy, among which the flame retardancy of RPUF-SO/Ni3 was the best. The current findings offer a practical way to produce green and low-carbon RPUF as well as promising prospects for the material's safe application.

7.
Int J Biol Macromol ; 275(Pt 2): 133562, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955299

RESUMEN

Polymeric materials such as fabric and foam have high flammability which limits their application in the field of fire protection. To this end, an organic-inorganic polymer colloid constructed from carboxymethyl chitosan and ammonium polyphosphate was used to improve the flame retardancy of flax fabric (FF) and rigid polyurethane foam (RPUF) based on a "one for two" strategy. The modification processes of FF and RPUF relied on pad-dry-cure method and UV-curing technology, respectively, and the modified FF and RPUF were severally designated as CMC/APP-FF and RFR-RPUF. Flame retardancy studies showed that CMC/APP-FF and RFR-RPUF exhibited limiting oxygen index values as high as 39.4 % and 42.6 %, respectively, and both achieved self-extinguishing behavior when external ignition source was removed. Thermogravimetric analysis and cone calorimetry test confirmed that CMC/APP-FF and RFR-RPUF had good charring ability and demonstrated reduced peak heat release rate values of 90.1 % and 10.8 %, respectively, distinct from before they were modified. In addition, condensed phase analysis showed that after burning, CMC/APP-FF became an integration char structure, whereas RFR-RPUF turned into a sandwiched char structure. In summary, the "one for two" strategy reported in this work provides a new insight into the economical fabrication of flame-retardant polymeric materials.


Asunto(s)
Coloides , Retardadores de Llama , Lino , Poliuretanos , Poliuretanos/química , Lino/química , Coloides/química , Quitosano/química , Quitosano/análogos & derivados , Textiles , Polímeros/química , Polifosfatos/química
8.
Polymers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891463

RESUMEN

In order to investigate the cross-scale effects of the interaction between the hard and soft segments of stiff polyurethane foam on the material's mesoscopic pore structure and macroscopic compression characteristics in various negative-temperature environments, this paper used molecular dynamics to calculate the interaction differences between hard and soft segments in different negative-temperature environments. The effects of various negative-temperature settings on the cell structure of stiff polyurethane foam were investigated using scanning electron microscopy and Image J software. Finally, macro experiments were used to determine the influence of a negative-temperature environment on the characteristics of stiff polyurethane foam (such as compressibility). The molecular simulation calculation results show that in a negative-temperature environment, decreasing temperature gradually increases the interaction between hard segment molecules and soft segment molecules, resulting in an increase in the molecules' modulus and cohesive energy density. The scanning electron microscope results reveal that a negative-temperature environment gradually increases the pore diameter of stiff polyurethane foam. The compression experiment findings demonstrate that, for the same service duration, the compressive strength in the -20 °C environment is 27.53% higher than that in the 0 °C environment. The study's findings reveal a microscopic mechanism for the following receiving alterations and toughness enhancement of rigid polyurethane foam throughout service in negative-temperature conditions.

9.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891530

RESUMEN

Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites' performance. Firstly, the hemp seed oil (HSO) was converted to a corresponding epoxy analog, followed by a ring-opening reaction to synthesize hemp bio-polyols. The hemp polyol was then reacted with diisocyanate in the presence of commercial polyols and other foaming components to produce RPUF in a single step. In addition, different fillers like microcrystalline cellulose, alkaline lignin, titanium dioxide, and melamine (as a flame retardant) were used in different wt.% ratios to fabricate composite foam. The mechanical characteristics, thermal degradation behavior, cellular morphology, apparent density, flammability, and closed-cell contents of the generated composite foams were examined. An initial screening of different fillers revealed that microcrystalline cellulose significantly improves the mechanical strength up to 318 kPa. The effect of melamine as a flame retardant in composite foam was also examined, which shows the highest compression strength of 447 kPa. Significantly better anti-flaming qualities than those of neat foam based on HSO have been reflected using 22.15 wt.% of melamine, with the lowest burning time of 4.1 s and weight loss of 1.88 wt.%. All the composite foams showed about 90% closed-cell content. The present work illustrates the assembly of a filler-based polyurethane foam composite with anti-flaming properties from bio-based feedstocks with high-performance applications.

10.
Polymers (Basel) ; 16(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611200

RESUMEN

The utilization of polyols derived from renewable sources presents an opportunity to enhance the sustainability of rigid polyurethane (PUR) foams, thereby contributing to the advancement of a circular bioeconomy. This study explores the development of PUR rigid foams exclusively using polyols sourced from second-generation renewable biomass feedstocks, specifically depolymerized birch bark suberin (suberinic acids) and tall oil fatty acids. The polyols achieved a total renewable material content as high as 74%, with a suberinic acid content of 37%. Response surface modeling was employed to determine the optimal bio-polyol, blowing agents, and catalyst content, hence, optimizing the bio-based foam formulations. In addition, response surface modeling was applied to rigid PUR foam formulations based on commercially available petroleum-based polyols for comparison. The results, including apparent density (~40-44 kg/m3), closed cell content (~95%), compression strength (>0.2 MPa, parallel to the foaming direction), and thermal conductivity (~0.019 W/(m·K)), demonstrated that the suberinic acids-based rigid PUR foam exhibited competitive qualities in comparison to petroleum-based polyols. Remarkably, the bio-based rigid PUR foams comprised up to 29% renewable materials. These findings highlight the potential of suberinic acid-tall oil polyols as effective candidates for developing rigid PUR foams, offering promising solutions for sustainable insulation applications.

11.
Polymers (Basel) ; 16(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337219

RESUMEN

To address the challenge of balancing the mechanical, thermal insulation, and flame-retardant properties of building insulation materials, this study presented a facile approach to modify the rigid polyurethane foam composites (RPUFs) via commercial expandable graphite (EG), ammonium polyphosphate (APP), and silica aerogel (SA). The resulting EG/APP/SA/RPUFs exhibited low thermal conductivity close to neat RPUF. However, the compressive strength of the 6EG/2APP/SA/RPUF increased by 49% along with achieving a V-0 flame retardant rating. The residual weight at 700 °C increased from 19.2 wt.% to 30.9 wt.%. Results from cone calorimetry test (CCT) revealed a 9.2% reduction in total heat release (THR) and a 17.5% decrease in total smoke production (TSP). The synergistic flame-retardant mechanism of APP/EG made significant contribution to the excellent flame retardant properties of EG/APP/SA/RPUFs. The addition of SA played a vital role in reducing thermal conductivity and enhancing mechanical performance, effectively compensating for the shortcomings of APP/EG. The cost-effective EG/APP/SA system demonstrates a positive ternary synergistic effect in achieving a balance in RPUFs properties. This study provides a novel strategy aimed at developing affordable building wall insulation material with enhanced safety features.

12.
Polymers (Basel) ; 15(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139960

RESUMEN

Lignin was utilized as an environmentally friendly synergistic agent to augment the fire resistance and mechanical characteristics of rigid polyurethane foam (PUF)/melamine-formaldehyde resin ammonium polyphosphate (MFAPP). The incorporation of lignin significantly enhanced the charring capability and flame retardancy of PUF/MFAPP. Specifically, PUF/MFAPP12/A-lignin3 exhibited a charring residue of 23.1% at 800 °C, accompanied by an increase in the limiting oxygen index (LOI) to 23.1%, resulting in a UL-94 V-0 rating. The cone calorimeter test (CCT) revealed that the peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR), and total smoke production (TSP) values of PUF/MFAPP12/A-lignin3 were all lower than for pure PUF. MFAPP and alkali lignin exerted a noticeable influence on the physical and mechanical properties, leading to increases in density (35.4 kg/m3), thermal conductivity (32.68 mW/(m·K)), and compressive strength (160.5 kPa). Observations of the morphology and elemental composition of char residues after combustion indicated the formation of an intact, thick, and continuous char layer enriched with nitrogen and phosphorus elements, which acted as a protective shield for the underlying foam.

13.
Molecules ; 28(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005271

RESUMEN

The amplified employment of rigid polyurethane foam (RPUF) has accentuated the importance of its flame-retardant properties in stimulating demand. Thus, a compelling research report is essential to scrutinize the recent progression in the field of the flame retardancy and smoke toxicity reduction of RPUF. This comprehensive analysis delves into the conventional and innovative trends in flame-retardant (FR) systems, comprising reactive-type FRs, additive-type FRs, inorganic nanoparticles, and protective coatings for flame resistance, and summarizes their impacts on the thermal stability, mechanical properties, and smoke toxicity suppression of the resultant foams. Nevertheless, there are still several challenges that require attention, such as the migration of additives, the insufficient interfacial compatibility between flame-retardant polyols or flame retardants and the RPUF matrix, and the complexity of achieving both flame retardancy and mechanical properties simultaneously. Moreover, future research should focus on utilizing functionalized precursors and developing biodegradable RPUF to promote sustainability and to expand the applications of polyurethane foam.

14.
Molecules ; 28(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37687096

RESUMEN

A rigid polyurethane foam (RPUF) composite was prepared by compounding phytic acid (PA)-functionalized Graphite oxide (PA-GO) with flame-retardant poly (Ammonium phosphate) (APP) and expandable graphite (EG). The effects of PA-GO on the thermal, flame-retardant, and mechanical properties of RPUF were studied using a thermogravimetric analyzer, a limiting oxygen index (LOI) tester, a UL-94 vertical combustion tester, a cone calorimeter, scanning electron microscopy, and a universal tensile testing machine. The results indicated that there was a significant synergistic flame-retardant effect between PA-GO and the intumescent flame retardants (IFR) in the RPUF matrix. Compared with RPUF-1, the addition of 0.3 wt% PA-GO could increase LOI from 25.7% to 26.5%, increase UL-94 rating from V-2 to V-0, and reduce the peak heat release rate (PHRR) and total heat release rate (THR) by 28.5% and 22.2%, respectively. Moreover, the amount of residual char increased from 22.2 wt% to 24.6 wt%, and the char layer was continuous and dense, with almost no holes. Meanwhile, the loss of mechanical properties was apparently lightened.

15.
Polymers (Basel) ; 15(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765601

RESUMEN

To alleviate the increasing energy crisis and achieve energy saving and consumption reduction in building materials, preparing shape-stabilized phase-change materials using bio-porous carbon materials from renewable organic waste to building envelope materials is an effective strategy. In this work, pine cone porous biomass carbon (PCC) was prepared via a chemical activation method using renewable biomaterial pine cone as a precursor and potassium hydroxide (KOH) as an activator. Polyethylene glycol (PEG) and octadecane (OD) were loaded into PCC using the vacuum impregnation method to prepare polyethylene glycol/pine cone porous biomass carbon (PEG/PCC) and octadecane/pine cone porous biomass carbon (OD/PCC) shape-stabilized phase-change materials. PCCs with a high specific surface area and pore volume were obtained by adjusting the calcination temperature and amount of KOH, which was shown as a caterpillar-like and block morphology. The shape-stabilized PEG/PCC and OD/PCC composites showed high phase-change enthalpies of 144.3 J/g and 162.3 J/g, and the solar-thermal energy conversion efficiencies of the PEG/PCC and OD/PCC reached 79.9% and 84.8%, respectively. The effects of the contents of PEG/PCC and OD/PCC on the temperature-controlling capability of rigid polyurethane foam composites were further investigated. The results showed that the temperature-regulating and temperature-controlling capabilities of the energy-storing rigid polyurethane foam composites were gradually enhanced with an increase in the phase-change material content, and there was a significant thermostatic plateau in energy absorption at 25 °C and energy release at 10 °C, which decreased the energy consumption.

16.
Materials (Basel) ; 16(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570156

RESUMEN

This study propounds a sustainable alternative to petroleum-based polyurethane (PU) foams, aiming to curtail this nonrenewable resource's continued and uncontrolled use. Coconut fatty acid distillate (CFAD) and crude glycerol (CG), both wastes generated from vegetable oil processes, were utilized for bio-based polyol production for rigid PU foam application. The raw materials were subjected to catalyzed glycerolysis with alkaline-alcohol neutralization and bleaching. The resulting polyol possessed properties suitable for rigid foam application, with an average OH number of 215 mg KOH/g, an acid number of 7.2983 mg KOH/g, and a Gardner color value of 18. The polyol was used to prepare rigid PU foam, and its properties were determined using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/derivative thermogravimetric (TGA/DTA), and universal testing machine (UTM). Additionally, the cell foam morphology was investigated by scanning electron microscope (SEM), in which most of its structure revealed an open-celled network and quantified at 92.71% open-cell content using pycnometric testing. The PU foam thermal and mechanical analyses results showed an average compressive strength of 210.43 kPa, a thermal conductivity of 32.10 mW·m-1K-1, and a density of 44.65 kg·m-3. These properties showed its applicability as a type I structural sandwich panel core material, thus demonstrating the potential use of CFAD and CG in commercial polyol and PU foam production.

17.
Materials (Basel) ; 16(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049021

RESUMEN

Rigid polyurethane foam (RPUF) is one of the best thermal insulation materials available, but its flammability makes it a potential fire hazard. Due to its porous nature, the large specific surface area is the key factor for easy ignition and rapid fires spread when exposed to heat sources. The burning process of RPUF mainly takes place on the surface. Therefore, if a flame-retardant coating can be formed on the surface of RPUF, it can effectively reduce or stop the flame propagation on the surface of RPUF, further improving the fire safety. Compared with the bulk flame retardant of RPUF, the flame-retardant coating on its surface has a higher efficiency in improving fire safety. This paper aims to review the preparations, properties, and working mechanisms of RPUF surface flame-retardant systems. Flame-retardant coatings are divided into non-intumescent flame-retardant coatings (NIFRCs) and intumescent flame-retardant coatings (IFRCs), depending on whether the flame-retardant coating expands when heated. After discussion, the development trends for surface flame-retardant systems are considered to be high-performance, biological, biomimetic, multifunctional flame-retardant coatings.

18.
Materials (Basel) ; 16(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049091

RESUMEN

Aluminum/rigid polyurethane foam composite plates (ARCPs) are widely used for thermal insulation. The interface debonding generated during manufacturing degrades the thermal insulation performance of an ARCP. In this study, the debonding of an ARCP, a composite plate with a porous and damped layer of rigid polyurethane foam (RPUF), was detected using A0 mode Lamb wave electromagnetic acoustic transducers (EMATs). The low energy transmission coefficient at the interface caused by the large acoustic impedance difference between aluminum and RPUF made the detection difficult. Based on these structural characteristics, an A0 mode Lamb wave with large out-of-plane displacement was used to detect the debonding. EMATs are preferred for generating A0 mode Lamb waves due to their advantages of being noncontact, not requiring a coupling agent, and providing convenient detection. A finite element simulation model considering the damping of the RPUF layer, the damping of the PU film at the interface, and the bonding stiffness of the interface was established. The simulation results indicated that the Lamb wave energy in the aluminum plate transmits into the RPUF layer in small amounts. However, the transmitted energy rapidly attenuated and was not reflected into the aluminum plate, as the RPUF layer was thick and highly damped. Therefore, energy attenuation was evident and could be used to characterize the debonding. An approximately linear relationship between the amplitude of the received signals and the debonding length was obtained. Experiments were performed on an ARCP using EMATs, and the experimental results were in good agreement with the simulation results.

19.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080706

RESUMEN

Rigid polyurethane foams (RPUFs) as building insulation materials quickly burn and release a lot of heat, smoke, and carbon monoxide, and cause human safety risk and severe environmental pollution. To mitigate these disadvantages, MOF/MWCNTs were fabricated via mixing Cu ions' partly substituted framework of ZIF-67 and MWCNTs, and further calcinated MOF/MWCNTs (C-MOF/MWCTs) was newly generated by calcinating MOF/MWCNTs in air. Then, MOF/MWCNTs and C-MOF/MWCNTs were respectively employed together with a phosphorus-nitrogen-containing reactive flame retardant (TBPBP) to prepare renewable bio-based rigid polyurethane foam, including RPUF-T/MOF/MWCNTs 2 and RPUF-T/C-MOF/MWCNTs 2. The characterization results showed that RPUF-T/C-MOF/MWCNTs 2 had better performance than RPUF-T/MOF/MWCNTs 2 and neat RPUF. Compared to neat RPUF, the compressive strength, limiting oxygen index value, and the mass char residue in cone calorimetry test of RPUF-T/C-MOF/MWCNTs 2, respectively, were increased by 105.93%, 46.35%, and 347.32%; meanwhile, the total heat release rate, total smoke production, total carbon monoxide product, and total carbon dioxide product were reduced by 47.97%, 50.46%, 41.38%, 43.37%, respectively. This study provides a referable method for preparing RPUFs with good physical properties, fire, and smoke safety, which is favorable for human safety and environmental protection as new building insulation materials.

20.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077123

RESUMEN

The aim of the article is to compare two types of fly ash (from the fluidized and pulverized coal combustion process) as a filler for rigid polyurethane foam. Pulverized fly ash (PFA) is widely used in building materials, while fluidized fly ash (FFA) is not currently recycled, but landfilled. The produced rigid polyurethane foams were reinforced with 5 and 10% by weight addition of fly ash from two different types of boilers. The foaming process, physical properties, morphologies and thermal degradation were subject to comparative analysis. The research indicated that fly ash intensifies the reactions of foam synthesis, most commonly, polyurethane (PU) foam with an addition of 10% PFA. What is interesting is that both ashes can be used in PU foam technology as they do not cause deterioration of the physical parameters. As shown, the addition of filler affects the morphology and impairs the brittleness. Additionally, the use of fly ash from coal combustion in the technology of polyurethane materials complies with the guidelines of the circular economy stated in the European Union legislation. Partial replacement of petrochemical components with waste filler also reduces the total energy consumption in the production of PU composites.


Asunto(s)
Ceniza del Carbón , Poliuretanos , Carbón Mineral/análisis , Ceniza del Carbón/química , Materiales de Construcción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA