Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38255586

RESUMEN

A deep understanding of the material parameters and the behavior of sandwich panels, which are used in the construction industry as roof and façade cladding, is important for the design of these construction components. Due to the constant changes in the polyurethane (PU) foams used as a core material, the experimental database for the current foams is small. Nowadays, there is an increasing number of failures of façade and roof panels after installation. This article presents a variety of experimental investigations on sandwich panels from two manufacturers with a core of polyisocyanurate (PIR) rigid foam (density: 40 kg/m3). As part of this study, compression, tension, shear, and bending tests were performed in several spatial directions and over the range required by the standard. The results of the tests showed the orthotropy of the core material and the dependence of the material on the direction and type of load. The stress-strain curves showed linear and non-linear areas. Using the data from this experimental study, a numerical model was implemented which utilized the Hill yield criterion to represent the orthotropy of the core material. The present investigation suggests that the classical von Mises failure criterion, used in many studies, is not suitable for the foam system applied in these sandwich panels. Instead, the Tsai-Wu criterion is more appropriate for defining the failure stresses.

2.
Int J Biol Macromol ; 258(Pt 2): 128994, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157632

RESUMEN

Non-isocyanate polyurethane (NIPU) as a new type of polyurethane material has become a hot research topic in the polyurethane industry due to its no utilization of toxic isocyanates during the synthesis process. And the developing on recyclable biomass materials has also much attention in the industrial sector, hence the preparation and application of bio-based NIPU has also become a very meaningful study work. So, in this paper, tannin as a biomass material was used to synthesize tannin based non-isocyanate polyurethanes (TNIPU) resin, and then successfully prepared a self-blowing TNIPU foam at room temperature by using formic acid as initiator and glutaraldehyde as cross-linking agent. The compressive strength of this foam as high as 0.8 MPa, which is an excellent compressive performance. Meanwhile it will return to the state before compression when removing the pressure. This indicating that the foam has good toughness. In addition, formic acid can react with the amino groups in TNIPU to form amide substances, and generated enough heat to initiate the foaming process. Glutaraldehyde, as a crosslinking agent, reacts with the amino group in TNIPU to form a network structure system. By scanning electron microscope (SEM) observation of the cell shapes, it can be seen that the foam cells were uniform in size and shape, and the cell pores showed open and closed cells. The limiting oxygen index (LOI) tested value of this TNIPU foam is 24.45 % without any flame retardant added, but compared to the LOI value of polyurethane foam (17 %-19 %), TNIPU foam reveal a better fire resistance. It has a wider application prospect.


Asunto(s)
Formiatos , Isocianatos , Poliuretanos , Taninos , Glutaral
3.
Med Eng Phys ; 119: 104027, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37634907

RESUMEN

Early aseptic loosening following primary total knee arthroplasty related to several factors might appear at the interface implant-cement or cement-bone. A standardized in vitro model might provide information on the relevance of single variable parameter of cementation including technique and cement respectively bone structure on fixation strength. Micromotion measurement using different directions of load should detect the primary stability of the interfaces. An open-cell rigid foam model was used for cementation of PFC-Sigma tibial trays with Palacos®. Pins were applied to the model for continuous non-destructive measurement. Relative micromotions for rotation, valgus-varus and extension flexion stress were detected at the interfaces as well as cement penetration was measured. The reproducibility of the measurement could be shown for all interfaces in extension-flexion movements. For rotation a negative trend was shown for the interface cement-prosthesis and cement-bone concerning varus-valgus stress reflecting varying surgical cementation technique. More micromotion related to extension-flexion force might reflect the design of the implant. Measurement of relative micromotion and cement distribution appear accurate to detect small differences of movement at different interfaces of cemented tibial implants and the results are reproducible for most parameter. An increased number of specimens should achieve statistical relevance for all measurements.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Miembros Artificiales , Reproducibilidad de los Resultados , Cementos para Huesos , Clavos Ortopédicos
4.
Polymers (Basel) ; 14(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36433146

RESUMEN

Polyurethanes (PUs) are versatile and widespread, particularly as flexible and rigid foams. To avoid isocyanates and other toxic reagents required for synthesis, such as phosgene, alternative synthetic routes have been utilized to produce non-isocyanate polyurethanes (NIPUs). A thermally and flame-resistant rigid NIPU was produced from environmentally benign and bio-sourced ingredients, requiring no catalyst or solvents. A foamed structure was obtained by the addition of glutaraldehyde and four different carboxylic acids: malic acid, maleic acid, citric acid, and aconitic acid. The resulting morphology, thermal degradation, and flame resistance of each foam were compared. The properties vary with each carboxylic acid used, but in each case, peak thermal degradation and peak heat release are postponed by >100 °C compared to commercial rigid PU foam. Furthermore, in a butane torch test, NIPU foams exhibit an 80% higher remaining mass and a 75% reduction in afterburn time, compared to commercial polyurethane. This bio-based polyurethane eliminates the hazards of traditional PUs, while imparting inherent thermal stability and flame resistance uncharacteristic of conventional foams.

5.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458731

RESUMEN

In this study, nineteen unmodified lignins from various sources (hardwood, softwood, wheat straw, and corn stover) and isolation processes (kraft, soda, organosolv, sulfite, and enzymatic hydrolysis) were used to replace 30 wt.% of petroleum-based polyol in rigid polyurethane/polyisocyanurate (PUR/PIR) foam formulations. Lignin samples were characterized by measuring their ash content, hydroxyl content (Phosphorus Nuclear Magnetic Resonance Spectroscopy), impurities (Inductively Coupled Plasma), and pH. After foam formulation, properties of lignin-based foams were evaluated and compared with a control foam (with no lignin) via cell morphology, closed-cell content, compression strength, apparent density, thermal conductivity, and color analysis. Lignin-based foams passed all measured standard specifications required by ASTM International C1029-15 for type 1 rigid insulation foams, except for three foams. These three foams had poor compressive strengths, significantly larger cell sizes, darker color, lower closed-cell contents, and slower foaming times. The foam made with corn stover enzymatic hydrolysis lignin showed no significant difference from the control foam in terms of compressive strength and outperformed all other lignin-based foams due to its higher aliphatic and p-hydroxyphenyl hydroxyl contents. Lignin-based foams that passed all required performance testing were made with lignins having higher pH, potassium, sodium, calcium, magnesium, and aliphatic/p-hydroxyphenyl hydroxyl group contents than those that failed.


Asunto(s)
Lignina , Poliuretanos , Lignina/química , Polímeros/química , Poliuretanos/química , Triazinas
6.
Materials (Basel) ; 16(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36614510

RESUMEN

The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results.

7.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34884675

RESUMEN

Tannin-furanic rigid foams are bio-based copolymers of tannin plant extract and furfuryl alcohol, promising candidates to replace synthetic insulation foams, as for example polyurethanes and phenolics, in eco-sustainable buildings thanks to their functional properties, such as lightness of the material and fire resistance. Despite their relevance as environmental-friendly alternatives to petroleum derivatives, many aspects of the polymerization chemistry still remain unclear. One of the open issues is on the spatial heterogeneity of the foam, i.e., whether the foam constituents prevalently polymerize in spatially segregated blocks or distribute almost homogenously in the foam volume. To address this matter, here we propose a multiscale FTIR study encompassing 1D FTIR spectroscopy, 2D FTIR imaging and 3D FTIR micro-tomography (FTIR-µCT) on tannin-furanic rigid foams obtained by varying the synthesis parameters in a controlled way. Thanks to the implementation of the acquisition and processing pipeline of FTIR-µCT, we were able for the first time to demonstrate that the polymer formulations influence the spatial organization of the foam at the microscale and, at the same time, prove the reliability of FTIR-µCT data by comparing 2D FTIR images and the projection of the 3D chemical images on the same plane.


Asunto(s)
Furanos/química , Taninos/química , Espectroscopía Infrarroja por Transformada de Fourier , Microtomografía por Rayos X
8.
Materials (Basel) ; 14(21)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34771890

RESUMEN

In this paper, native cellulose I was subjected to alkaline treatment. As a result, cellulose I was transformed to cellulose II and some nanometric particles were formed. Both polymorphic forms of cellulose were modified with poly(ethylene glycol) (PEG) and then used as fillers for polyurethane. Composites were prepared in a one-step process. Cellulosic fillers were characterized in terms of their chemical (Fourier transformation infrared spectroscopy) and supermolecular structure (X-ray diffraction), as well as their particle size. Investigation of composite polyurethane included measurements of density, characteristic processing times of foam formation, compression strength, dimensional stability, water absorption, and thermal conductivity. Much focus was put on the application aspect of the produced insulation polyurethane foams. It was shown that modification of cellulosic filler with poly(ethylene glycol) has a positive influence on formation of polyurethane composites-if modified filler was used, the values of compression strength and density increased, while water sorption and thermal conductivity decreased. Moreover, it was proven that the introduction of cellulosic fillers into the polyurethane matrix does not deteriorate the strength or thermal properties of the foams, and that composites with such fillers have good application potential.

9.
Polymers (Basel) ; 8(6)2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30979317

RESUMEN

For many years, reduction of fuel consumption has been a major aim in terms of both costs and environmental concerns. One option is to reduce the weight of fuel consumers. For this purpose, the use of a lightweight material based on rigid foams is a relevant choice. This paper deals with a new high temperature epoxy expanded material as substitution of phenolic resin, classified as potentially mutagenic by European directive Reach. The optimization of thermoset foam depends on two major parameters, the reticulation process and the expansion of the foaming agent. Controlling these two phenomena can lead to a fully expanded and cured material. The rheological behavior of epoxy resin is studied and gel time is determined at various temperatures. The expansion of foaming agent is investigated by thermomechanical analysis. Results are correlated and compared with samples foamed in the same temperature conditions. The ideal foaming/gelation temperature is then determined. The second part of this research concerns the optimization of curing cycle of a high temperature trifunctional epoxy resin. A two-step curing cycle was defined by considering the influence of different curing schedules on the glass transition temperature of the material. The final foamed material has a glass transition temperature of 270 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA