Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(9): 107708, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178951

RESUMEN

Hydrogen sulfide (H2S) has traditionally been considered an environmental toxin for animal lineages; yet, it plays a signaling role in various processes at low concentrations. Mechanisms controlling H2S in animals, especially in sulfide-rich environments, are not fully understood. The main detoxification pathway involves the conversion of H2S into less harmful forms, through a mitochondrial oxidation pathway. The first step of this pathway oxidizes sulfide and reduces ubiquinone (UQ) through sulfide-quinone oxidoreductase (SQRD/SQOR). Because H2S inhibits cytochrome oxidase and hence UQ regeneration, this pathway becomes compromised at high H2S concentrations. The free-living nematode Caenorhabditis elegans feeds on bacteria and can face high sulfide concentrations in its natural environment. This organism has an alternative ETC that uses rhodoquinone (RQ) as the lipidic electron transporter and fumarate as the final electron acceptor. In this study, we demonstrate that RQ is essential for survival in sulfide. RQ-less animals (kynu-1 and coq-2e KO) cannot survive high H2S concentrations, while UQ-less animals (clk-1 and coq-2a KO) exhibit recovery, even when provided with a UQ-deficient diet. Our findings highlight that sqrd-1 uses both benzoquinones and that RQ-dependent ETC confers a key advantage (RQ regeneration) over UQ in sulfide-rich conditions. C. elegans also faces cyanide, another cytochrome oxidase inhibitor, whose detoxification leads to H2S production, via cysl-2. Our study reveals that RQ delays killing by the HCN-producing bacteria Pseudomonas aeruginosa PAO1. These results underscore the fundamental role that RQ-dependent ETC serves as a biochemical adaptation to H2S environments, and to pathogenic bacteria producing cyanide and H2S toxins.

2.
Pharmaceutics ; 16(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38675106

RESUMEN

There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.

3.
Protist ; 174(6): 125996, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38041972

RESUMEN

Euglena gracilis, photosynthetic protist, has a unique ability to generate wax esters in the absence of oxygen, employing a distinctive fatty acid synthesis mechanism. Through comprehensive inhibitor assays and gene-silencing techniques, our research clearly emphasized the indispensable role of the mitochondrial anaerobic respiratory chain in this biosynthesis. We identified acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), and rhodoquinone (RQ) as central molecular components in the pathway. These findings strongly indicated a potential reversal of beta-oxidation occurring within mitochondria for fatty acid production in anaerobic conditions. Furthermore, our analysis revealed the pivotal function of nicotinamide nucleotide transhydrogenase (NNT) in efficiently managing the NADPH/NAD+ conversion essential for sustaining anaerobic metabolism. This review outlines our key findings and provides a comprehensive understanding of the molecular mechanisms that enable E. gracilis to produce wax ester anaerobically.


Asunto(s)
Euglena gracilis , Euglena gracilis/genética , Euglena gracilis/metabolismo , Anaerobiosis , Ésteres/metabolismo , Mitocondrias/metabolismo , Ácidos Grasos , Respiración
4.
Artículo en Inglés | MEDLINE | ID: mdl-37639366

RESUMEN

Aims: To determine the role of the kynurenine (KYN) pathway in rhodoquinone (RQ) and de novo NAD+ biosynthesis and whether NAD+ rescue pathways are essential in parasitic worms (helminths). Results: We demonstrate that RQ, the key electron transporter used by helminths under hypoxia, derives from the tryptophan (Trp) catabolism even in the presence of a minimal KYN pathway. We show that of the KYN pathway genes only the kynureninase and tryptophan/indoleamine dioxygenases are essential for RQ biosynthesis. Metabolic labeling with Trp revealed that the lack of the formamidase and kynurenine monooxygenase genes did not preclude RQ biosynthesis in the flatworm Mesocestoides corti. In contrast, a minimal KYN pathway prevented de novo NAD+ biosynthesis, as revealed by metabolic labeling in M. corti, which also lacks the 3-hydroxyanthranilate 3,4-dioxygenase gene. Our results indicate that most helminths depend solely on NAD+ rescue pathways, and some lineages rely exclusively on the nicotinamide salvage pathway. Importantly, the inhibition of the NAD+ recycling enzyme nicotinamide phosphoribosyltransferase with FK866 led cultured M. corti to death. Innovation: We use comparative genomics of more than 100 hundred helminth genomes, metabolic labeling, HPLC-mass spectrometry targeted metabolomics, and enzyme inhibitors to define pathways that lead to RQ and NAD+ biosynthesis in helminths. We identified the essential enzymes of these pathways in helminth lineages, revealing new potential pharmacological targets for helminthiasis. Conclusion: Our results demonstrate that a minimal KYN pathway was evolutionary maintained for RQ and not for de novo NAD+ biosynthesis in helminths and shed light on the essentiality of NAD+ rescue pathways in helminths.

5.
Biochim Biophys Acta Bioenerg ; 1862(1): 148334, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33159845

RESUMEN

Eukaryotic microbes (protists) that occupy low-oxygen environments often have drastically different mitochondrial metabolism compared to their aerobic relatives. A common theme among many anaerobic protists is the serial loss of components of the electron transport chain (ETC). Here, we discuss the diversity of the ETC across the tree of eukaryotes and review hypotheses for how ETCs are modified, and ultimately lost, in protists. We find that while protists have converged to some of the same metabolism as anaerobic animals, there are clear protist-specific strategies to thrive without oxygen.


Asunto(s)
Evolución Biológica , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Eucariontes/enzimología , Proteínas Mitocondriales/metabolismo , Anaerobiosis
6.
Elife ; 92020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32744503

RESUMEN

Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.


Asunto(s)
Transferasas Alquil y Aril/genética , Empalme Alternativo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Ubiquinona/análogos & derivados , Transferasas Alquil y Aril/metabolismo , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Nematodos/enzimología , Nematodos/genética , Nematodos/metabolismo , Oxidación-Reducción , Platelmintos/enzimología , Platelmintos/genética , Platelmintos/metabolismo , Ubiquinona/metabolismo
7.
Biochim Biophys Acta Bioenerg ; 1861(11): 148278, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735860

RESUMEN

The terpenoid benzoquinone, rhodoquinone (RQ), is essential to the bioenergetics of many organisms that survive in low oxygen environments. RQ biosynthesis and its regulation has potential as a novel target for anti-microbial and anti-parasitic drug development. Recent work has uncovered two distinct pathways for RQ biosynthesis which have evolved independently. The first pathway is used by bacteria, such as Rhodospirillum rubrum, and some protists that possess the rquA gene. These species derive their RQ directly from ubiquinone (UQ), the essential electron transporter used in the aerobic respiratory chain. The second pathway is used in animals, such as Caenorhabditis elegans and parasitic helminths, and requires 3-hydroxyanthranilic acid (3-HAA) as a precursor, which is derived from tryptophan through the kynurenine pathway. A COQ-2 isoform, which is unique to these species, facilitates prenylation of the 3-HAA precursor. After prenylation, the arylamine ring is further modified to form RQ using several enzymes common to the UQ biosynthetic pathway. In addition to current knowledge of RQ biosynthesis, we review the phylogenetic distribution of RQ and its function in anaerobic electron transport chains in bacteria and animals. Finally, we discuss key steps in RQ biosynthesis that offer potential as drug targets to treat microbial and parasitic infections, which are rising global health concerns.


Asunto(s)
Bacterias/metabolismo , Vías Biosintéticas , Electrones , Metabolismo Energético , Ubiquinona/análogos & derivados , Anaerobiosis , Animales , Transporte de Electrón , Ubiquinona/metabolismo
8.
Front Genet ; 10: 1043, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781156

RESUMEN

Helminths use an alternative mitochondrial electron transport chain (ETC) under hypoxic conditions, such as those found in the gastrointestinal tract. In this alternative ETC, fumarate is the final electron acceptor and rhodoquinone (RQ) serves as an electron carrier. RQ receives electrons from reduced nicotinamide adenine dinucleotide through complex I and donates electrons to fumarate through complex II. In this latter reaction, complex II functions in the opposite direction to the conventional ETC (i.e., as fumarate reductase instead of succinate dehydrogenase). Studies in Ascaris suum indicate that this is possible due to changes in complex II, involving alternative succinate dehydrogenase (SDH) subunits SDHA and SDHD, derived from duplicated genes. We analyzed helminth genomes and found that distinct lineages have different gene duplications of complex II subunits (SDHA, SDHB, SDHC, and SDHD). Similarly, we found lineage-specific duplications in genes encoding complex I subunits that interact with quinones (NDUF2 and NDUF7). The phylogenetic analysis of ETC subunits revealed a complex history with independent evolutionary events involving gene duplications and losses. Our results indicated that there is not a common evolutionary event related to ETC subunit genes linked to RQ. The free-living nematode Caenorhabditis elegans uses RQ and has two genes encoding SDHA (sdha-1 and sdha-2) and two genes encoding NDUF2 (nduf2-1 and nduf2-2). sdha-1 and nduf2-1 are essential genes and have a similar expression pattern during C. elegans lifecycle. Using knockout strains, we found that sdha-2 and nduf2-2 are not essential, even in hypoxia. Yet, sdha-2 and nduf2-2 expression is increased in the early embryo and in dauer larvae, stages where there is low oxygen tension. Strikingly, sdha-1 and sdha-2 as well as nduf2-1 and nduf2-2 showed inverted expression profiles during the C. elegans life cycle. Finally, we found that sdha-2 and nduf2-2 knockout mutant strain progeny is affected. Our results indicate that different complex I and II subunit gene duplications provide increased fitness to worms.

9.
Elife ; 82019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31232688

RESUMEN

Parasitic helminths infect over a billion humans. To survive in the low oxygen environment of their hosts, these parasites use unusual anaerobic metabolism - this requires rhodoquinone (RQ), an electron carrier that is made by very few animal species. Crucially RQ is not made or used by any parasitic hosts and RQ synthesis is thus an ideal target for anthelmintics. However, little is known about how RQ is made and no drugs are known to block RQ synthesis. C. elegans makes RQ and can use RQ-dependent metabolic pathways - here, we use C. elegans genetics to show that tryptophan degradation via the kynurenine pathway is required to generate the key amine-containing precursors for RQ synthesis. We show that C. elegans requires RQ for survival in hypoxic conditions and, finally, we establish a high throughput assay for drugs that block RQ-dependent metabolism. This may drive the development of a new class of anthelmintic drugs. This study is a key first step in understanding how RQ is made in parasitic helminths.


Asunto(s)
Caenorhabditis elegans/metabolismo , Quinurenina/metabolismo , Redes y Vías Metabólicas/genética , Ubiquinona/análogos & derivados , Anaerobiosis , Animales , Caenorhabditis elegans/genética , Hipoxia , Análisis de Supervivencia , Ubiquinona/biosíntesis
10.
J Biol Chem ; 294(28): 11047-11053, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31177094

RESUMEN

A key metabolic adaptation of some species that face hypoxia as part of their life cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and most details of this pathway have remained elusive. Here, we used Caenorhabditis elegans as a model animal to elucidate key steps in RQ biosynthesis. Using RNAi and a series of C. elegans mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo Deletion of kynu-1, encoding a kynureninase that converts l-kynurenine (KYN) to anthranilic acid (AA) and 3-hydroxykynurenine (3HKYN) to 3-hydroxyanthranilic acid (3HAA), completely abolished RQ biosynthesis but did not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to 3HKYN, drastically reduced RQ but not Q levels. Knockdown of the Q biosynthetic genes coq-5 and coq-6 affected both Q and RQ levels, indicating that both biosynthetic pathways share common enzymes. Our study reveals that two pathways for RQ biosynthesis have independently evolved. Unlike in bacteria, where amination is the last step in RQ biosynthesis, in worms the pathway begins with the arylamine precursor AA or 3HAA. Because RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have potential utility for targeting parasitic infections that cause important neglected tropical diseases.


Asunto(s)
Caenorhabditis elegans/metabolismo , Quinurenina/metabolismo , Ubiquinona/análogos & derivados , Animales , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografía Líquida de Alta Presión , Hidrolasas/antagonistas & inhibidores , Hidrolasas/genética , Hidrolasas/metabolismo , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Quinurenina 3-Monooxigenasa/genética , Quinurenina 3-Monooxigenasa/metabolismo , Espectrometría de Masas , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Tejido Subcutáneo/metabolismo , Ubiquinona/análisis , Ubiquinona/biosíntesis , Ubiquinona/metabolismo
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(9): 1226-1234, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31121262

RESUMEN

Terpenoid quinones are liposoluble redox-active compounds that serve as essential electron carriers and antioxidants. One such quinone, rhodoquinone (RQ), couples the respiratory electron transfer chain to the reduction of fumarate to facilitate anaerobic respiration. This mechanism allows RQ-synthesizing organisms to operate their respiratory chain using fumarate as a final electron acceptor. RQ biosynthesis is restricted to a handful of prokaryotic and eukaryotic organisms, and details of this biosynthetic pathway remain enigmatic. One gene, rquA, was discovered to be required for RQ biosynthesis in Rhodospirillum rubrum. However, the function of the gene product, RquA, has remained unclear. Here, using reverse genetics approaches, we demonstrate that RquA converts ubiquinone to RQ directly. We also demonstrate the first in vivo synthetic production of RQ in Escherichia coli and Saccharomyces cerevisiae, two organisms that do not natively produce RQ. These findings help clarify the complete RQ biosynthetic pathway in species which contain RquA homologs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Rhodospirillum rubrum/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vías Biosintéticas , Escherichia coli/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
12.
Elife ; 72018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29697049

RESUMEN

Under hypoxic conditions, some organisms use an electron transport chain consisting of only complex I and II (CII) to generate the proton gradient essential for ATP production. In these cases, CII functions as a fumarate reductase that accepts electrons from a low electron potential quinol, rhodoquinol (RQ). To clarify the origins of RQ-mediated fumarate reduction in eukaryotes, we investigated the origin and function of rquA, a gene encoding an RQ biosynthetic enzyme. RquA is very patchily distributed across eukaryotes and bacteria adapted to hypoxia. Phylogenetic analyses suggest lateral gene transfer (LGT) of rquA from bacteria to eukaryotes occurred at least twice and the gene was transferred multiple times amongst protists. We demonstrate that RquA functions in the mitochondrion-related organelles of the anaerobic protist Pygsuia and is correlated with the presence of RQ. These analyses reveal the role of gene transfer in the evolutionary remodeling of mitochondria in adaptation to hypoxia.


Asunto(s)
Adaptación Biológica , Anaerobiosis , Complejo II de Transporte de Electrones/genética , Eucariontes/genética , Eucariontes/fisiología , Transferencia de Gen Horizontal , Ubiquinona/análogos & derivados , Bacterias/genética , Complejo II de Transporte de Electrones/metabolismo , Fumaratos/metabolismo , Variación Genética , Oxidación-Reducción , Filogenia , Ubiquinona/biosíntesis
13.
Biosci Biotechnol Biochem ; 82(6): 963-977, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29457959

RESUMEN

Prenylquinones are isoprenoid compounds with a characteristic quinone structure and isoprenyl tail that are ubiquitous in almost all living organisms. There are four major prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among organisms. UQ, PQ, and RQ contain benzoquinone, while MK contains naphthoquinone. UQ, MK, and RQ are involved in oxidative phosphorylation, while PQ functions in photosynthetic electron transfer. Some organisms possess two types of prenylquinones; Escherichia coli has UQ8 and MK8, and Caenorhabditis elegans has UQ9 and RQ9. Crystal structures of most of the enzymes involved in MK synthesis have been solved. Studies on the biosynthesis and functions of quinones have advanced recently, including for phylloquinone (PhQ), which has a phytyl moiety instead of an isoprenyl tail. Herein, the synthesis and applications of prenylquinones are reviewed.


Asunto(s)
Quinonas/metabolismo , Transferasas Alquil y Aril/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Escherichia coli/metabolismo , Humanos , Ácido Mevalónico/metabolismo , Fosforilación Oxidativa , Prenilación , Prohibitinas , Fosfatos de Azúcar/metabolismo
14.
Genome Biol Evol ; 9(4): 956-967, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338965

RESUMEN

Bivalves and gastropods are the two largest classes of extant molluscs. Despite sharing a huge number of features, they do not share a key ecological one: gastropods are essentially epibenthic, although most bivalves are infaunal. However, this is not the ancestral bivalve condition; Cambrian forms were surface crawlers and only during the Ordovician a fundamental infaunalization process took place, leading to bivalves as we currently know them. This major ecological shift is linked to the exposure to a different redox environoments (hypoxic or anoxic) and with the Lower Devonian oxygenation event. We investigated selective signatures on bivalve and gastropod mitochondrial genomes with respect to a time calibrated mitochondrial phylogeny by means of dN/dS ratios. We were able to detect 1) a major signal of directional selection between the Ordovician and the Lower Devonian for bivalve mitochondrial Complex I, and 2) an overall higher directional selective pressure on bivalve Complex V with respect to gastropods. These and other minor dN/dS patterns and timings are discussed, showing that the Ordovician infaunalization event left heavy traces in bivalve mitochondrial genomes.

15.
Bioessays ; 36(10): 924-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25118050

RESUMEN

The origin and early evolution of animals marks an important event in life's history. This event is historically associated with an important variable in Earth history - oxygen. One view has it that an increase in oceanic oxygen levels at the end of the Neoproterozoic Era (roughly 600 million years ago) allowed animals to become large and leave fossils. How important was oxygen for the process of early animal evolution? New data show that some modern sponges can survive for several weeks at low oxygen levels. Many groups of animals have mechanisms to cope with low oxygen or anoxia, and very often, mitochondria - organelles usually associated with oxygen - are involved in anaerobic energy metabolism in animals. It is a good time to refresh our memory about the anaerobic capacities of mitochondria in modern animals and how that might relate to the ecology of early metazoans.


Asunto(s)
Mitocondrias/metabolismo , Filogenia , Poríferos/metabolismo , Anaerobiosis/genética , Animales , Metabolismo Energético/genética , Redes y Vías Metabólicas , Mitocondrias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA