Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; : e2402961, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895971

RESUMEN

Reservoir computing (RC) system is based upon the reservoir layer, which non-linearly transforms input signals into high-dimensional states, facilitating simple training in the readout layer-a linear neural network. These layers require different types of devices-the former demonstrated as diffusive memristors and the latter prepared as drift memristors. The integration of these components can increase the structural complexity of RC system. Here, a reconfigurable resistive switching memory (RSM) capable of implementing both diffusive and drift dynamics is demonstrated. This reconfigurability is achieved by preparing a medium with a 3D ion transport channel (ITC), enabling precise control of the metal filament that determines memristor operation. The 3D ITC-RSM operates in a volatile threshold switching (TS) mode under a weak electric field and exhibits short-term dynamics that are confirmed to be applicable as reservoir elements in RC systems. Meanwhile, the 3D ITC-RSM operates in a non-volatile bipolar switching (BS) mode under a strong electric field, and the conductance modulation metrics forming the basis of synaptic weight update are validated, which can be utilized as readout elements in the readout layer. Finally, an RC system is designed for the application of reconfigurable 3D ITC-RSM, and performs real-time recognition on Morse code datasets.

2.
Adv Sci (Weinh) ; 11(23): e2310263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38647431

RESUMEN

Metal halide perovskites (MHPs) are considered as promising candidates in the application of nonvolatile high-density, low-cost resistive switching (RS) memories and artificial synapses, resulting from their excellent electronic and optoelectronic properties including large light absorption coefficient, fast ion migration, long carrier diffusion length, low trap density, high defect tolerance. Among MHPs, 2D halide perovskites have exotic layered structure and great environment stability as compared with 3D counterparts. Herein, recent advances of 2D MHPs for the RS memories and artificial synapses realms are comprehensively summarized and discussed, as well as the layered structure properties and the related physical mechanisms are presented. Furthermore, the current issues and developing roadmap for the next-generation 2D MHPs RS memories and artificial synapse are elucidated.

3.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38006098

RESUMEN

Facing the era of information explosion and the advent of artificial intelligence, there is a growing demand for information technologies with huge storage capacity and efficient computer processing. However, traditional silicon-based storage and computing technology will reach their limits and cannot meet the post-Moore information storage requirements of ultrasmall size, ultrahigh density, flexibility, biocompatibility, and recyclability. As a response to these concerns, polymer-based resistive memory materials have emerged as promising candidates for next-generation information storage and neuromorphic computing applications, with the advantages of easy molecular design, volatile and non-volatile storage, flexibility, and facile fabrication. Herein, we first summarize the memory device structures, memory effects, and memory mechanisms of polymers. Then, the recent advances in polymer resistive switching materials, including single-component polymers, polymer mixtures, 2D covalent polymers, and biomacromolecules for resistive memory devices, are highlighted. Finally, the challenges and future prospects of polymer memory materials and devices are discussed. Advances in polymer-based memristors will open new avenues in the design and integration of high-performance switching devices and facilitate their application in future information technology.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513134

RESUMEN

In this work, the SET and RESET processes of bipolar resistive switching memories with silicon nanocrystals (Si-NCs) embedded in an oxide matrix is simulated by a stochastic model. This model is based on the estimation of two-dimensional oxygen vacancy configurations and their relationship with the resistive state. The simulation data are compared with the experimental current-voltage data of Si-NCs/SiO2 multilayer-based memristor devices. Devices with 1 and 3 Si-NCs/SiO2 bilayers were analyzed. The Si-NCs are assumed as agglomerates of fixed oxygen vacancies, which promote the formation of conductive filaments (CFs) through the multilayer according to the simulations. In fact, an intermediate resistive state was observed in the forming process (experimental and simulated) of the 3-BL device, which is explained by the preferential generation of oxygen vacancies in the sites that form the complete CFs, through Si-NCs.

5.
ACS Nano ; 17(13): 11994-12039, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37382380

RESUMEN

Memristive technology has been rapidly emerging as a potential alternative to traditional CMOS technology, which is facing fundamental limitations in its development. Since oxide-based resistive switches were demonstrated as memristors in 2008, memristive devices have garnered significant attention due to their biomimetic memory properties, which promise to significantly improve power consumption in computing applications. Here, we provide a comprehensive overview of recent advances in memristive technology, including memristive devices, theory, algorithms, architectures, and systems. In addition, we discuss research directions for various applications of memristive technology including hardware accelerators for artificial intelligence, in-sensor computing, and probabilistic computing. Finally, we provide a forward-looking perspective on the future of memristive technology, outlining the challenges and opportunities for further research and innovation in this field. By providing an up-to-date overview of the state-of-the-art in memristive technology, this review aims to inform and inspire further research in this field.

6.
ACS Appl Mater Interfaces ; 15(19): 23546-23556, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37130268

RESUMEN

To better understand the structure-property relationship and the significance of the donor-acceptor (D-A) system in resistive memory devices, a series of new organic small molecules with A-π-D-π-A- and D-π-D-π-D-based architecture comprising a bis(triphenylamine) core unit and ethynyl-linked electron donor/acceptor arms were designed and synthesized. The devices with A-π-D-π-A structures exhibited write-once-read-many memory behavior with a good retention time of 1000 s while those based on D-π-D-π-D molecules presented only conductor property. The compound with nitrophenyl substitution resulted in a higher ON/OFF current ratio of 104, and the fluorophenyl substitution exhibited the lowest threshold voltage of -1.19 V. Solubility of the compounds in common organic solvents suggests that they are promising candidates for economic solution-processable techniques. Density functional theory calculations were used to envision the frontier molecular orbitals and to support the proposed resistive switching mechanisms. It is inferred that the presence of donor/acceptor substituents has a significant impact on the highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels of the molecules, which affects their memory-switching behavior and thus suggests that a D-A architecture is ideal for memory device resistance switching characteristics.

7.
Micromachines (Basel) ; 14(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985037

RESUMEN

A methodology to estimate the device temperature in resistive random access memories (RRAMs) is presented. Unipolar devices, which are known to be highly influenced by thermal effects in their resistive switching operation, are employed to develop the technique. A 3D RRAM simulator is used to fit experimental data and obtain the maximum and average temperatures of the conductive filaments (CFs) that are responsible for the switching behavior. It is found that the experimental CFs temperature corresponds to the maximum simulated temperatures obtained at the narrowest sections of the CFs. These temperature values can be used to improve compact models for circuit simulation purposes.

8.
Nanotechnology ; 34(11)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36595321

RESUMEN

Organic resistive switching memory (ORSM) shows great potential for neotype memory devices due to the preponderances of simple architecture, low power consumption, high switching speed and feasibility of large-area fabrication. Herein, solution-processed ternary ORSM devices doped with bipolar materials were achieved with high ON/OFF ratio and outstanding device stability. The resistive switching performance was effectively ameliorated by doping two bipolar materials (DpAn-InAc and DpAn-5BzAc) in different blending concentration into the PVK:OXD-7 donor-accepter system. Compared with the binary system (PVK: 30 wt% OXD-7), the ON/OFF ratios of the ternary devices doped with 6 wt% DpAn-5BzAc were greatly increased from 7.91 × 102to 4.98 × 104, with the operating voltage (∣Vset-Vreset∣) declined from 4.90 V to 2.25 V, respectively. Additionally, the stability of resistance state and uniformity of operating voltage were also significantly optimized for the ternary devices. For comparison, ternary devices doped with DpAn-InAc have been explored, which also achieved improved resistive switching behavior. A detailed analysis of electrical characteristics and the internal charge transfer properties of ORSM was performed to unveil the performance enhancement in ternary devices. Results indicate that the use of bipolar materials favors the efficient operation of OSRMs with proper energy level alignment and effective charge transfer.

9.
ACS Appl Mater Interfaces ; 14(48): 53990-53998, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36413801

RESUMEN

Herein, the lead-free halide perovskite films with different Cu-to-Ag ratios (Cu3-xAgxSbI6, x = 0, 1, 2, or 3) have been prepared by a spin-coating method at low temperature. The enhanced resistive switching (RS) performance of more uniform SET/RESET voltages and the endurance up to at least 1600 cycles are found in the RS memory with a device structure of Ag/PMMA/Cu2AgSbI6/ITO. The device performance is not degraded under different bending angles and after 103 bending cycles, which is beneficial for flexible memory applications. The appropriately increased activation energy of the perovskites with the partial substitution of Ag atoms, which would lead to a more robust filament formed, is proposed to explain the enhanced RS mechanism. Importantly, the effective size and number of filaments measured by conductive AFM are introduced to confirm the multilevel storage effect of Cu2AgSbI6. The multilevel storage characteristics with four resistance levels are demonstrated by various compliance currents. Moreover, the Cu2AgSbI6 memory devices still exhibit enhanced RS properties and multilevel storage after 75 days of exposure to ambient conditions. Our study provides a strategy for improving the stability and high-density storage applications of halide perovskite RS memory devices.

10.
Adv Sci (Weinh) ; 9(33): e2201806, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36073844

RESUMEN

Resistive random-access memories are promising candidates for novel computer architectures such as in-memory computing, multilevel data storage, and neuromorphics. Their working principle is based on electrically stimulated materials changes that allow access to two (digital), multiple (multilevel), or quasi-continuous (analog) resistive states. However, the stochastic nature of forming and switching the conductive pathway involves complex atomistic defect configurations resulting in considerable variability. This paper reveals that the intricate interplay of 0D and 2D defects can be engineered to achieve reproducible and controlled low-voltage formation of conducting filaments. The author find that the orientation of grain boundaries in polycrystalline HfOx is directly related to the required forming voltage of the conducting filaments, unravelling a neglected origin of variability. Based on the realistic atomic structure of grain boundaries obtained from ultra-high resolution imaging combined with first-principles calculations including local strain, this paper shows how oxygen vacancy segregation energies and the associated electronic states in the vicinity of the Fermi level govern the formation of conductive pathways in memristive devices. These findings are applicable to non-amorphous valence change filamentary type memristive device. The results demonstrate that a fundamental atomistic understanding of defect chemistry is pivotal to design memristors as key element of future electronics.

11.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35564166

RESUMEN

Graphene oxide-cysteamine-silver nanoparticle (GCA)/silver nanowire (AgNW)/GCA/colorless poly(amide-imide) (cPAI) structures based on cPAI substrates with polyimide and polyamide syntheses were fabricated to study their characteristics. A layer of electrodes was constructed using a sandwich structure-such as GCA/AgNW/GCA-with cPAI used as a substrate to increase the heat resistance and improve their mechanical properties. Furthermore, to overcome the disadvantages of AgNWs-such as their high surface roughness and weak adhesion between the substrate and electrode layers-electrodes with embedded structures were fabricated using a peel-off process. Through bending, tapping, and durability tests, it was confirmed that these multilayer electrodes exhibited better mechanical durability than conventional AgNW electrodes. Resistive random-access memory based on GCA/AgNW/GCA/cPAI electrodes was fabricated, and its applicability to nonvolatile memory was confirmed. The memory device had an ON/OFF current ratio of ~104@0.5 V, exhibiting write-once-read-many time characteristics, maintaining these memory characteristics for up to 300 sweep cycles. These findings suggest that GCA/AgNW/GCA/cPAI electrodes could be used as flexible and transparent electrodes for next-generation flexible nonvolatile memories.

12.
ACS Nano ; 16(3): 3756-3767, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35188367

RESUMEN

Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV-ozone oxidation at a substrate temperature as low as 120 °C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices.

13.
ACS Appl Mater Interfaces ; 14(3): 4371-4377, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014262

RESUMEN

Organic-inorganic halide perovskites (OIHPs) have emerged as an active layer for resistive switching memory (RSM). Among various OIHPs, two-dimensional OIHPs are advantageous in RSMs because of their stability. This stability can be further improved using two-dimensional Dion-Jacobson OIHPs. Moreover, OIHP-based RSMs operated by the formation of halide-ion filaments are affected by grain boundaries because they can act as a shortcut for ion migration. Therefore, it is essential to control the grains in OIHPs for reliable memory operation. Here, we present RSMs using Dion-Jacobson OIHP with controlled grain sizes. The grain sizes of the OIHP are effectively controlled by adjusting the ratio of the N,N-dimethylformamide and dimethyl sulfoxide. The controlled grain sizes can modulate the paths for halide ion migration, which enables the change of the on/off ratio in RSM. In addition, cross-point array structure is essential for high-density memory applications. However, in the cross-point array structure, unwanted current flow through unselected memory cells can happen due to sneak-current paths, so it is necessary to suppress leakage current from neighboring cells by adopting selector devices. We demonstrate the application of selector devices to OIHP-based RSMs to prevent sneak current paths. These results provide the potential of OIHP for use in high-density memory applications.

14.
Nanomaterials (Basel) ; 13(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615995

RESUMEN

With the big data and artificial intelligence era coming, SiNx-based resistive random-access memories (RRAM) with controllable conductive nanopathways have a significant application in neuromorphic computing, which is similar to the tunable weight of biological synapses. However, an effective way to detect the components of conductive tunable nanopathways in a-SiNx:H RRAM has been a challenge with the thickness down-scaling to nanoscale during resistive switching. For the first time, we report the evolution of a Si dangling bond nanopathway in a-SiNx:H resistive switching memory can be traced by the transient current at different resistance states. The number of Si dangling bonds in the conducting nanopathway for all resistive switching states can be estimated through the transient current based on the tunneling front model. Our discovery of transient current induced by the Si dangling bonds in the a-SiNx:H resistive switching device provides a new way to gain insight into the resistive switching mechanism of the a-SiNx:H RRAM in nanoscale.

15.
Nanotechnology ; 33(12)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34902845

RESUMEN

The two-dimensional hexagonal boron nitride (h-BN) has been used as resistive switching (RS) material for memory due to its insulation, good thermal conductivity and excellent thermal/chemical stability. A typical h-BN based RS memory employs a metal-insulator-metal vertical structure, in which metal ions pass through the h-BN layers to realize the transition from high resistance state to low resistance state. Alternatively, just like the horizontal structure widely used in the traditional MOS capacitor based memory, the performance of in-plane h-BN memory should also be evaluated to determine its potential applications. As consequence, a horizontal structured resistive memory has been designed in this work by forming freestanding h-BN across Ag nanogap, where the two-dimensional h-BN favored in-plane transport of metal ions to emphasize the RS behavior. As a result, the memory devices showed switching slope down to 0.25 mV dec-1, ON/OFF ratio up to 108, SET current down to pA and SET voltage down to 180 mV.

16.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34685125

RESUMEN

An amorphous Pr0.7Ca0.3MnO3 (PCMO) film was grown on a TiN/SiO2/Si (TiN-Si) substrate at 300 °C and at an oxygen pressure (OP) of 100 mTorr. This PCMO memristor showed typical bipolar switching characteristics, which were attributed to the generation and disruption of oxygen vacancy (OV) filaments. Fabrication of the PCMO memristor at a high OP resulted in nonlinear conduction modulation with the application of equivalent pulses. However, the memristor fabricated at a low OP of 100 mTorr exhibited linear conduction modulation. The linearity of this memristor improved because the growth and disruption of the OV filaments were mostly determined by the redox reaction of OV owing to the presence of numerous OVs in this PCMO film. Furthermore, simulation using a convolutional neural network revealed that this PCMO memristor has enhanced classification performance owing to its linear conduction modulation. This memristor also exhibited several biological synaptic characteristics, indicating that an amorphous PCMO thin film fabricated at a low OP would be a suitable candidate for artificial synapses.

17.
ACS Appl Mater Interfaces ; 13(6): 7453-7460, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33533590

RESUMEN

In this study, the possibilities of noise tailoring in filamentary resistive switching memory devices are investigated. To this end, the resistance and frequency scaling of the low-frequency 1/f-type noise properties are studied in representative mainstream material systems. It is shown that the overall noise floor is tailorable by the proper material choice, as demonstrated by the order-of-magnitude smaller noise levels in Ta2O5 and Nb2O5 transition-metal oxide memristors compared to Ag-based devices. Furthermore, the variation of the resistance states allows orders-of-magnitude tuning of the relative noise level in all of these material systems. This behavior is analyzed in the framework of a point-contact noise model highlighting the possibility for the disorder-induced suppression of the noise contribution arising from remote fluctuators. These findings promote the design of multipurpose resistive switching units, which can simultaneously serve as analog-tunable memory elements and tunable noise sources in probabilistic computing machines.

18.
ACS Appl Mater Interfaces ; 13(4): 5445-5450, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476514

RESUMEN

The main requirements for skin-attachable memory devices are flexibility and biocompatibility. We represent a flexible, transparent, and biocompatible resistive switching random access memory (ReRAM) based on gold-decorated chitosan for future flexible and wearable electronics. The device with an Ag/Au-chitosan/Au cross-bar structure shows nonvolatile ReRAM properties. This fabricated Au-chitosan-based biocompatible ReRAM (bioReRAM) shows reliable bipolar memory performance with mechanical flexibility. The device shows essential memory characterizations including long data retention and hundreds of switching cycles. The origin of the resistance switching properties is related to trap-assisted space-charge-limited conduction in the high-resistance state and formation/annihilation of a conductive filament in the low-resistance state. This transparent bioReRAM is a viable candidate for flexible and biodegradable nanoelectronic devices.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Oro/química , Dispositivos Electrónicos Vestibles , Electrodos , Diseño de Equipo , Humanos , Luz , Nanoestructuras/química
19.
ACS Appl Mater Interfaces ; 13(1): 1021-1026, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33369379

RESUMEN

Halide perovskites (HPs) have possible uses as an active layer for emerging memory devices due to their low operation voltage and high on/off ratio. However, HP-based memory devices, which are operated by the formation of a conductive filament, still suffer from reliability issues such as limited endurance and stability. To solve the problems, it is essential to control filament formation in the active layer. Here, we present nanoscale HP-based memory devices that have a Ag-doped ZnO (AZO) layer on HP. The AZO layer is used as a Ag ion reservoir for filament formation in HP, and this reservoir enables control of filament formation. By adjusting the Ag concentration in the AZO layer, the controlled filament composed of Ag can be formed; as a result, the memory device has excellent endurance (3 × 104 cycles) compared to the device that uses a Ag electrode instead of an AZO layer (4 × 102 cycles). Also, an AZO layer can passivate HP, so the device operates stably in ambient air for 15 days with a high on/off ratio (106). These results demonstrate that the introduction of the AZO layer can improve the reliability of HP-based memory devices for high-density applications.

20.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260819

RESUMEN

Graphene oxide (GO)-cysteamine-Ag nanoparticles (GCA)-silver nanowire (AgNW) fabricated by depositing GCA over sprayed AgNWs on PET films were proposed for transparent and flexible electrodes, and their optical, electrical, and mechanical properties were analyzed by energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, current-voltage measurements, and bending test. GCA-AgNW electrodes show optical transmittance of >80% at 550 nm and exhibit a high figure-of-merit value of up to 116.13 in the samples with sheet resistances of 20-40 Ω/◻. It was observed that the detrimental oxidation of bare AgNWs over time was considerably decreased, and the mechanical robustness was improved. To apply the layer as an actual electrode in working devices, a Pt/GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/GCA-AgNW/polyethylene terephthalate structure was fabricated, and resistive switching memory was demonstrated. On the basis of these results, we confirm that the proposed GCA-AgNW layer can be used as transparent and flexible electrode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA