Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1382862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774217

RESUMEN

Introduction: Tomato cultivation across the world is severely affected by emerging plant viruses. An effective method for protection of commercial crops against viral threats is the use of cultivars harboring resistance genes. Tomato brown rugose fruit virus (ToBRFV), a recently emerged tobamovirus, is able to overcome the dominant Tm-22 resistance that is present in the majority of commercial tomato cultivars. In an effort to alleviate the severe consequences of ToBRFV on tomato production, tomato breeding companies are developing new cultivars with varying levels of resistance against ToBRFV. Methods: In the present study, cultivars with a new resistant phenotype against ToBRFV were screened against a wild-type isolate of ToBRFV, and subsequently, their performance under commercial greenhouse conditions was monitored. Following the identification of ToBRFV symptoms in a commercial greenhouse-where both new resistant and susceptible cultivars were interplanted-these cultivars were more closely examined. Results: The presence of ToBRFV was molecularly confirmed on both cultivar types suggesting that the new resistance had been broken. High-throughput sequencing (HTS) was used to study the complete genomes of viral isolates present in the two cultivar types. The analysis revealed a single amino acid change at position 82 of the movement protein of ToBRFV in the isolate present in the new resistant cultivar compared with the isolate identified in the susceptible cultivar. Discussion: A screening bioassay, that was performed to compare the infectivity of the two ToBRFV isolates, confirmed that only the isolate with this specific amino acid change could successfully infect the resistant cultivar, overcoming the new resistance against ToBRFV.

2.
Insect Mol Biol ; 33(3): 228-245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38348538

RESUMEN

Aphid genomic resources enable the study of complex life history traits and provide information on vector biology, host adaption and speciation. The currant-lettuce aphid (Nasonovia ribisnigri (Hemiptera: Aphididae) (Mosley)) is a cosmopolitan pest of outdoor lettuce (Lactuca sativa (Asterales: Asteraceae) (Linnaeus)). Until recently, the use of resistant cultivars was an effective method for managing N. ribisnigri. A resistant cultivar containing a single gene (Nr-locus), introduced in the 1980s, conferred complete resistance to feeding. Overreliance of this Nr-locus in lettuce resulted in N. ribisnigri's ability to break resistance mechanism, with first reports during 2003. Our work attempts to understand which candidate gene(s) are associated with this resistance-breaking mechanism. We present two de novo draft assembles for N. ribisnigri genomes, corresponding to both avirulent (Nr-locus susceptible) and virulent (Nr-locus resistant) biotypes. Changes in gene expression of the two N. ribisnigri biotypes were investigated using transcriptomic analyses of RNA-sequencing (RNA-seq) data to understand the potential mechanisms of resistance to the Nr-locus in lettuce. The draft genome assemblies were 94.2% and 91.4% complete for the avirulent and virulent biotypes, respectively. Out of the 18,872 differentially expressed genes, a single gene/locus was identified in N. ribisnigri that was shared between two resistant-breaking biotypes. This locus was further explored and validated in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments and has predicted localisations in both the cytoplasm and nucleus. This is the first study to provide evidence that a single gene/locus is likely responsible for the ability of N. ribisnigri to overcome the Nr-locus resistance in the lettuce host.


Asunto(s)
Áfidos , Lactuca , Lactuca/genética , Lactuca/parasitología , Áfidos/genética , Animales , Perfilación de la Expresión Génica , Genoma de los Insectos , Transcriptoma
3.
Viruses ; 15(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38140546

RESUMEN

Tomato brown rugose fruit virus (ToBRFV) is an economically important seed and mechanically transmitted pathogen of significant importance to tomato production around the globe. Synergistic interaction with pepino mosaic virus (PepMV), another seed and mechanically transmitted virus, and long-distance dissemination of these two viruses via contaminated tomato fruits through global marketing were previously suggested. In 2019, we detected both viruses in several grocery store-purchased tomatoes in South Florida, USA. In this study, to identify potential sources of inoculum, co-infection status, prevalence, and genomic diversity of these viruses, we surveyed symptomatic and asymptomatic imported tomatoes sold in ten different groceries in four cities in South Florida. According to the product labels, all collected tomatoes originated from Canada, Mexico, or repacking houses in the United States. With high prevalence levels, 86.5% of the collected samples were infected with ToBRFV, 90% with PepMV alone, and 73% were mixed-infected. The phylogenetic study showed no significant correlations between ToBRFV genomic diversity and the tomato label origin. Phylogenetic analysis of PepMV isolates revealed the prevalence of the PepMV strains, Chilean (CH2) and recombinant (US2). The results of this study highlight the continual presence of PepMV and ToBRFV in imported tomatoes in Florida grocery stores.


Asunto(s)
Coinfección , Solanum lycopersicum , Tobamovirus , Frutas , Florida/epidemiología , Filogenia , Prevalencia , Coinfección/epidemiología , Genómica
4.
Front Microbiol ; 14: 1257724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840712

RESUMEN

Tomato spotted wilt orthotospovirus (TSWV) is one of the most successful pandemic agricultural pathogens transmitted by several species of thrips in a persistent propagative manner. Current management strategies for TSWV heavily rely on growing single-gene resistant cultivars of tomato ("Sw-5b" gene) and pepper ("Tsw" gene) deployed worldwide. However, the emergence of resistance-breaking strains (RB) in recent years has compounded the threat of TSWV to agricultural production worldwide. Despite this, an extensive study on the thrips transmission biology of RB strains is currently lacking. It is also unclear whether mutualistic TSWV-thrips interactions vary across different novel strains with disparate geographical origins. To address both critical questions, we studied whether and how four novel RB strains of TSWV (two sympatric and two allopatric), along with a non-RB strain, impact western flower thrips (WFT) fitness and whether this leads to differences in TSWV incidence, symptom severity (virulence), and virus accumulation in two differentially resistant tomato cultivars. Our findings show that all RB strains increased WFT fitness by prolonging the adult period and increasing fecundity compared to non-RB and non-viruliferous controls, regardless of the geographical origin of strains or the TSWV titers in individual thrips, which were substantially low in allopatric strains. TSWV accumulation in thrips varied at different developmental stages and was unrelated to the infected tissues from which thrips acquired the virus. However, it was significantly positively correlated to that in WFT-inoculated susceptible plants, but not the resistant ones. The TSW incidences were high in tomato plants infected with all RB strains, ranging from 80% to 90% and 100% in resistant and susceptible plants, respectively. However, TSW incidence in the non-RB-infected susceptible tomato plants was 80%. Our findings provide new insights into how novel strains of TSWV, by selectively offering substantial fitness benefits to vectors, modulate transmission and gain a potential epidemiological advantage over non-RB strains. This study presents the first direct evidence of how vector-imposed selection pressure, besides the one imposed by resistant cultivars, may contribute to the worldwide emergence of RB strains.

5.
J Nematol ; 55(1): 20230043, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37849472

RESUMEN

Sixteen Meloidogyne isolates from tomato fields in California grown with resistant cultivars were multiplied on resistant tomato in a greenhouse. Of these resistance-breaking isolates, one was identified as M. javanica, and all others as M. incognita. The reproduction of the M. javanica isolate and four M. incognita isolates on six resistant tomato cultivars and on susceptible and resistant cultivars of pepper, sweetpotato, green bean, cotton, and cowpea was evaluated and compared to an avirulent M. incognita population in greenhouse pot trials. On resistant tomato cultivars, there were minor but significant differences between the resistance-breaking Meloidogyne isolates and between the different tomato cultivars. Of the other resistant crop cultivars, pepper was resistant to all isolates and green bean to all M. incognita isolates, while cotton and cowpea allowed reproduction of one of the resistance-breaking M. incognita isolates. The resistant sweetpotato cv. Bonita behaved like resistant tomato, allowing reproduction of all five resistance-breaking isolates but not of the avirulent M. incognita. Our results showed that variability exists among resistance-breaking Meloidogyne isolates, and that isolates overcoming resistance in tomato may also be virulent on resistant sweetpotato.

6.
Genes (Basel) ; 14(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37761928

RESUMEN

An in-house tomato inbred line, YNAU335, was planted in a greenhouse in spring from 2014 to 2017, and showed immunity to tomato spotted wilt virus (TSWV). YNAU335 was infected with TSWV in the spring from 2018 to 2020, and disease was observed on the leaves, sepals, and fruits. In 2021 and 2022, YNAU335 was planted in spring in the same greenhouse, which was suspected of being infected with TSWV, and visible disease symptoms were observed on the fruits. Transmission electron microscopy, deep sequencing of small RNAs, and molecular mutation diagnosis were used to analyze the pathological features and genetic polymorphism of TSWV infecting tomato fruit. Typical TSWV virions were observed in the infected fruits, but not leaves from YNAU335 grown between 2021 and 2022, and cross-infection was very rarely observed. The number of mitochondria and chloroplasts increased, but the damage to the mitochondria was greater than that seen in the chloroplasts. Small RNA deep sequencing revealed the presence of multiple viral species in TSWV-infected and non-infected tomato samples grown between 2014-2022. Many virus species, including TSWV, which accounted for the largest proportion, were detected in the TSWV-infected tomato leaves and fruit. However, a variety of viruses other than TSWV were also detected in the non-infected tissues. The amino acids of TSWV nucleocapsid proteins (NPs) and movement proteins (MPs) from diseased fruits of YNAU335 picked in 2021-2022 were found to be very diverse. Compared with previously identified NPs and MPs from TSWV isolates, those found in this study could be divided into three types: non-resistance-breaking, resistance-breaking, and other isolates. The number of positive clones and a comparison with previously identified amino acid mutations suggested that mutation F at AA118 of the MP (GenBank OL310707) is likely the key to breaking the resistance to TSWV, and this mutation developed only in the infected fruit of YNAU335 grown in 2021 and 2022.

7.
Mol Plant Pathol ; 24(10): 1300-1311, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37403515

RESUMEN

The nonstructural protein NSm of tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant of the tomato single dominant Sw-5 resistance gene. Although Sw-5 effectiveness has been shown for most TSWV isolates, the emergence of resistance-breaking (RB) isolates has been observed. It is strongly associated with two point mutations (C118Y or T120N) in the NSm viral protein. TSWV-like symptoms were observed in tomato crop cultivars (+Sw-5) in the Baja California peninsula, Mexico, and molecular methods confirmed the presence of TSWV. Sequence analysis of the NSm 118-120 motif and three-dimensional protein modelling exhibited a noncanonical C118F substitution in seven isolates, suggesting that this substitution could emulate the C118Y-related RB phenotype. Furthermore, phylogenetic and molecular analysis of the full-length genome (TSWV-MX) revealed its reassortment-related evolution and confirmed that putative RB-related features are restricted to the NSm protein. Biological and mutational NSm 118 residue assays in tomato (+Sw-5) confirmed the RB nature of TSWV-MX isolate, and the F118 residue plays a critical role in the RB phenotype. The discovery of a novel TSWV-RB Mexican isolate with the presence of C118F substitution highlights a not previously described viral adaptation in the genus Orthotospovirus, and hence, the necessity of further crop monitoring to alert the establishment of novel RB isolates in cultivated tomatoes.


Asunto(s)
Solanum lycopersicum , Tospovirus , Tospovirus/genética , Filogenia , México , Mutación/genética , Enfermedades de las Plantas
8.
Front Plant Sci ; 14: 1098786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063189

RESUMEN

Beet necrotic yellow vein virus (BNYVV) causes rhizomania disease in sugar beet (Beta vulgaris), which is controlled since more than two decades by cultivars harboring the Rz1 resistance gene. The development of resistance-breaking strains has been favored by a high selection pressure on the soil-borne virus population. Resistance-breaking is associated with mutations at amino acid positions 67-70 (tetrad) in the RNA3 encoded pathogenicity factor P25 and the presence of an additional RNA component (RNA5). However, natural BNYVV populations are highly diverse making investigations on the resistance-breaking mechanism rather difficult. Therefore, we applied a reverse genetic system for BNYVV (A type) to study Rz1 resistance-breaking by direct agroinoculation of sugar beet seedlings. The bioassay allowed a clear discrimination between susceptible and Rz1 resistant plants already four weeks after infection, and resistance-breaking was independent of the sugar beet Rz1 genotype. A comprehensive screen of natural tetrads for resistance-breaking revealed several new mutations allowing BNYVV to overcome Rz1. The supplementation of an additional RNA5 encoding the pathogenicity factor P26 allowed virus accumulation in the Rz1 genotype independent of the P25 tetrad. This suggests the presence of two distinct resistance-breaking mechanisms allowing BNYVV to overcome Rz1. Finally, we showed that the resistance-breaking effect of the tetrad and the RNA5 is specific to Rz1 and has no effect on the stability of the second resistance gene Rz2. Consequently, double resistant cultivars (Rz1+Rz2) should provide effective control of Rz1 resistance-breaking strains. Our study highlights the flexibility of the viral genome allowing BNYVV to overcome host resistance, which underlines the need for a continuous search for alternative resistance genes.

9.
Plant Dis ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627809

RESUMEN

Widespread use of tomato cultivars with the Sw-5 resistance gene has led to the emergence of resistance-breaking (RB) strains of tomato spotted wilt virus across the globe. In June of 2022, tomato spotted wilt (TSW) symptoms were observed at two farms (A and B, within 15 miles of each other) in Rowan County, NC on several commercial TSW resistant tomato cultivars (all heterozygous for the Sw-5 gene). At farm A, ~10% of plants had symptomatic foliage with ~30% of fruit with symptoms, while at farm B, up to 50% of plants had symptomatic foliage with ~80% of fruit with symptoms. Visual symptoms included stunting, severe leaf curling and bronzing, necrotic lesions on leaves, petioles and stems, and concentric ring spots on fruit (Supplementary Fig. 1). TSWV ImmunoStrips (AgDia, Elkhart, IN) and reverse-transcription (RT)-PCR with NSm primers (di Rienzo et al 2018) confirmed the presence of TSWV in 12 symptomatic plants sampled across the two farms. Primers designed to detect Impatiens necrotic spot virus, groundnut ringspot virus, tomato chlorotic spot virus, tomato chlorosis virus, alfalfa mosaic virus, and tomato necrotic streak virus (ilarvirus, Badillo et al., 2016) failed to generate amplicons of the expected size from cDNA generated from these field samples. The amplicons from full-length NSm cDNA were sequenced from independent, single-leaflet isolates from the TSWV-positive plants (three from farm A, nine from farm B) with the expectation of finding an amino acid (aa) substitution associated with the Sw-5 RB phenotype identified previously in CA (C118Y, Batuman et al. 2017) or Spain (C118Y and T120N, Lopez et al. 2011). All three nucleotide sequences from farm A contained the NSm C118Y substitution reported in CA. All three sequences were 99% identical (including the C118Y mutation) to NCBI GenBank accession KU179600.1, a TSWV isolate collected from GA in 2014 with no cultivar information reported. The nine nucleotide sequences from farm B contained neither of the two previously reported aa substitutions associated with the RB phenotype. Instead, all contained a D122G substitution within a conserved region of the TSWV NSm protein reported to be involved in direct interaction with the Sw-5 protein (Zhu et al 2017). Likewise, Huang et al (2021) generated a D122A mutation in TSWV-NSm, resulting in failure to elicit a Sw-5 mediated hypersensitive response. Three NSm sequences retrieved from GenBank contained the D122G substitution (AY848921.1, HM015516.1, KU179582.1), however, this mutation was not implicated directly with RB phenotypes (Ciuffo et al., 2005; Lopez et al., 2011; Marshall, 2016). The RB phenotype was confirmed with the NC variants on 'Mountain Merit' (Sw-5) by two means of virus inoculation: mechanical, rub-inoculation with extracted sap from infected plants, and thrips transmission assays with lab colony-maintained, Frankliniella occidentalis, the western flower thrips. Symptomatic leaf tissue obtained from these inoculation assays tested positive for TSWV by DAS-ELISA (AgDia, Elkhart, IN) and RT-PCR with NSm primers, providing definitive evidence of the occurrence of RB-TSWV at both farms, and subsequent sequencing confirmed the C118Y and D122G substitutions. This report warrants further investigation of the putative origins, prevalence and epidemiological implications of RB-TSWV variants in NC tomato production, and the development of new sources of resistance to TSWV.

10.
Virology ; 578: 71-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473279

RESUMEN

TYLCV-IS76, a unique recombinant between tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), has replaced its parental viruses in southern Morocco. To refine its emergence scenario, its fitness was monitored experimentally in conditions aiming at reproducing natural situations, i.e. superinfection of plants already infected with parental viruses and competition with other TYLCV/TYLCSV recombinants (LSRec) automatically generated in plants coinfected with TYLCV and TYLCSV. TYLCV-IS76 accumulated significantly more than parental viruses regardless of plant age and superinfection delay. Although TYLCV-IS76 and LSRec both accumulated more than parental viruses in laboratory conditions, LSRec were displaced by TYLCV-IS76 in nature like parental viruses were. TYLCV-IS76 did not exhibit any vector transmission advantage over LSRec and TYLCV the most competitive parental virus. Thus, it is apparently only in the plant compartment that the recombination event that generated TYLCV-IS76, induced the competitiveness advantage by which the last became first.


Asunto(s)
Begomovirus , Hemípteros , Solanum lycopersicum , Sobreinfección , Animales , Enfermedades de las Plantas , Begomovirus/genética
11.
Front Plant Sci ; 14: 1283399, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235194

RESUMEN

Tomato spotted wilt (TSW) disease caused by tomato spotted wilt orthotospovirus (TSWV, Orthotospovirus tomatomaculae) poses a significant threat to specialty and staple crops worldwide by causing over a billion dollars in crop losses annually. Current strategies for TSWV diagnosis heavily rely on nucleic acid or protein-based techniques which require significant technical expertise, and are invasive, time-consuming, and expensive, thereby catalyzing the search for better alternatives. In this study, we explored the potential of Raman spectroscopy (RS) in early detection of TSW in a non-invasive and non-destructive manner. Specifically, we investigated whether RS could be used to detect strain specific TSW symptoms associated with four TSWV strains infecting three differentially resistant tomato cultivars. In the acquired spectra, we observed notable reductions in the intensity of vibrational peaks associated with carotenoids. Using high-performance liquid chromatography (HPLC), we confirmed that TSWV caused a substantial decrease in the concentration of lutein that was detected by RS. Finally, we demonstrated that Partial Least Squares-Discriminant Analysis (PLS-DA) could be used to differentiate strain-specific TSW symptoms across all tested cultivars. These results demonstrate that RS can be a promising solution for early diagnosis of TSW, enabling timely disease intervention and thereby mitigating crop losses inflicted by TSWV.

12.
J Gen Virol ; 103(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35947097

RESUMEN

The A-type of beet necrotic yellow vein virus (BNYVV) is widely distributed in Europe and is one of the major virus types causing rhizomania disease in sugar beet. The closely related P-type is mainly limited to a small region in France (Pithiviers). Both virus types possess four RNAs (RNA1-4), but the P-type harbours an additional fifth RNA species (RNA5). The P-type is associated with stronger disease symptoms and resistance-breaking of Rz1, one of the two resistance genes which are used to control BNYVV infection. These characteristics are presumably due to the presence of RNA5, but experimental evidence for this is lacking. We generated the first infectious cDNA clone of BNYVV P-type to study its pathogenicity in sugar beet in comparison to a previously developed A-type clone. Using this tool, we confirmed the pathogenicity of the P-type clone in the experimental host Nicotiana benthamiana and two Beta species, B. macrocarpa and B. vulgaris. Independent of RNA5, both the A- and the P-type accumulated in lateral roots and reduced the taproot weight of a susceptible sugar beet genotype to a similar extent. In contrast, only the P-type clone was able to accumulate a virus titre in an Rz1-resistant variety whereas the A-type clone failed to infect this variety. The efficiency of the P-type to overcome Rz1 resistance was strongly associated with the presence of RNA5. Only a double resistant variety, harbouring Rz1 and Rz2, prevented an infection with the P-type. Reassortment experiments between the P- and A-type clones demonstrated that both virus types can exchange whole RNA components without losing the ability to replicate and to move systemically in sugar beet. Although our study highlights the close evolutionary relationship between the two virus types, we were able to demonstrate distinct pathogenicity properties that are attributed to the presence of RNA5 in the P-type.


Asunto(s)
Beta vulgaris , Virus de Plantas , Células Clonales , ADN Complementario/genética , Enfermedades de las Plantas , Virus de Plantas/genética , ARN , Azúcares , Virulencia/genética
13.
Plant Biotechnol J ; 20(10): 2006-2022, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35778883

RESUMEN

The cap-binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap-dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single-nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non-transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non-mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild-type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild-type. An RNA-Seq analysis identified critical genes in pollen development that were down-regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E-specific mRNA translation initiation is a limiting factor for male gametes formation in melon.


Asunto(s)
Cucurbitaceae , Factor 4E Eucariótico de Iniciación , Gametogénesis en la Planta , Enfermedades de las Plantas , Infertilidad Vegetal , Proteínas de Plantas , Polen , Potyvirus , Sistemas CRISPR-Cas , Cucurbitaceae/genética , Cucurbitaceae/virología , Factor 4E Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Gametogénesis en la Planta/genética , Edición Génica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Polen/genética , Polen/crecimiento & desarrollo
14.
Mol Cell Probes ; 61: 101792, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35041994

RESUMEN

Tomato spotted wilt virus (TSWV) is a highly destructive virus for pepper. Introgression of the resistance gene Tsw in pepper is used to manage TSWV worldwide; however, the occurrence of Tsw resistance-breaking (RB) variants threatens the pepper industry. Here, we developed a multiplex reverse-transcription PCR assay for detection of recently emerged Tsw RB variants in South Korea with high specificity and sensitivity.


Asunto(s)
Tospovirus , Reacción en Cadena de la Polimerasa Multiplex , Enfermedades de las Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa , Tospovirus/genética
15.
Phytopathology ; 112(5): 1185-1191, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34752138

RESUMEN

Cucumber vein yellowing virus (CVYV) is an emerging virus on cucurbits in the Mediterranean Basin, against which few resistance sources are available, particularly in melon. The melon accession PI 164323 displays complete resistance to isolate CVYV-Esp, and accession HSD 2458 presents a tolerance, i.e., very mild symptoms despite virus accumulation in inoculated plants. The resistance is controlled by a dominant allele Cvy-11, while the tolerance is controlled by a recessive allele cvy-2, independent from Cvy-11. Before introducing the resistance or tolerance in commercial cultivars through a long breeding process, it is important to estimate their specificity and durability. Upon inoculation with eight molecularly diverse CVYV isolates, the resistance was found to be isolate-specific because many CVYV isolates induced necrosis on PI 164323, whereas the tolerance presented a broader range. A resistance-breaking isolate inducing severe mosaic on PI 164323 was obtained. This isolate differed from the parental strain by a single amino acid change in the VPg coding region. An infectious CVYV cDNA clone was obtained, and the effect of the mutation in the VPg cistron on resistance to PI 164323 was confirmed by reverse genetics. This represents the first determinant for resistance-breaking in an ipomovirus. Our results indicate that the use of the Cvy-11 allele alone will not provide durable resistance to CVYV and that, if used in the field, it should be combined with other control methods such as cultural practices and pyramiding of resistance genes to achieve long-lasting resistance against CVYV.


Asunto(s)
Cucumis sativus , Cucurbitaceae , Cucurbitaceae/genética , Mutación , Fitomejoramiento , Enfermedades de las Plantas , Potyviridae
16.
Mol Plant Pathol ; 23(5): 622-633, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34962031

RESUMEN

Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115-135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A , NSmW121A , NSmD122A , NSmR124A , and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A , NSmW121A , or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q , which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.


Asunto(s)
Solanum lycopersicum , Tospovirus , Alanina/genética , Alanina/metabolismo , Aminoácidos/metabolismo , Resistencia a la Enfermedad/genética , Solanum lycopersicum/metabolismo , Péptidos/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Movimiento Viral en Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Tospovirus/fisiología
17.
Plant Dis ; 106(1): 137-143, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34410860

RESUMEN

Meloidogyne incognita, the southern root-knot nematode (RKN), is the most predominant plant-parasitic nematode species of tomato and causes significant yield loss. The Mi-1.2 gene confers resistance in tomatoes to M. incognita; however, virulent RKN populations capable of parasitizing resistant tomato cultivars have been reported from different regions in the world. Four naturally occurring virulent populations of M. incognita were found in vegetable fields from four counties in Georgia with no history of tomato cultivation of the Mi gene. Two consecutive greenhouse trials showed that all four virulent RKN populations reproduced on tomato cultivars, including Amelia, Skyway, and Myrtle, with the Mi-1 gene, while an avirulent population of M. incognita race 3 was unable to overcome host resistance. Virulent RKN populations varied in reproduction among resistant cultivars, with Ma6 population having the greatest reproduction potential. No difference in penetration potential of the virulent (Ma6) and avirulent populations was found on susceptible and resistant tomato cultivars. However, virulent Ma6 population females were successful at egg-laying, whereas avirulent female development was arrested in the resistant cultivars. The virulent Ma6 population also induced feeding sites in the roots of resistant cultivars, whereas the avirulent population did not. To our knowledge, this is the first report of resistance-breaking populations of M. incognita in Georgia and the second state in the United States after California.


Asunto(s)
Solanum lycopersicum , Tylenchoidea , Animales , Georgia , Solanum lycopersicum/genética , Tylenchoidea/genética
18.
Breed Sci ; 71(2): 193-200, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377067

RESUMEN

The plant eukaryotic translation-initiation factors eIF4E and eIF(iso)4E play key roles in infection by plant RNA viruses, especially potyviruses. Mutations in the genes that encode these factors reduce susceptibility to the viruses. In the amphidiploid plant tobacco (Nicotiana tabacum L.), eIF4E1-S deletion mutants resist Potato virus Y (PVY), but resistance-breaking strains (RB-PVY) have appeared. In an earlier study, we demonstrated that the loss-of-function of eIF(iso)4E-T reduces susceptibility to RB-PVY. Here, we show that simultaneous inhibition of eIF4E1-S and eIF(iso)4E-T synergistically confers enhanced resistance to both PVY and RB-PVY without host growth or development defects. PVY symptoms and accumulation in a tobacco line lacking eIF4E1-S were detected at 14 days post-inoculation (dpi) and RB-PVY symptoms in lines without functional eIF(iso)4E-T were observed at 24 dpi. RB-PVY emerged in a PVY-infected tobacco line lacking eIF4E1-S. In contrast, lines without functional eIF4E1-S and eIF(iso)4E-T were nearly immune to PVY and RB-PVY, and little accumulation of either virus was detected even at 56 dpi. Thus, the lines will be promising for PVY-resistance breeding. This study provides a novel strategy to develop tobacco highly resistant to PVY and RB-PVY, and insights into the mechanisms responsible for high-level resistance.

19.
J Agric Food Chem ; 69(33): 9684-9692, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387470

RESUMEN

The use of N-aryl amide derivatives as spatially acting insecticides remains relatively unexplored. To expand this knowledge, we synthesized eighty-nine N-aryl amide analogues and screened them for mortality against an insecticide-susceptible strain of Aedes aegypti mosquitoes, Orlando (OR), using a vapor exposure glass tube assay. Of the screened compounds, twenty-two produced >92% mortality at 24 h and warranted further investigation to determine LC50 values. Fifteen of these analogues had LC50 values within 2 orders of magnitude of transfluthrin, and of significant interest, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,3,3,3-pentafluoropropanamide (compound 70) was nearly as potent as transfluthrin and exhibited greater toxicity than metofluthrin when screened against OR A. aegypti. Compounds exhibiting potent toxicity against OR A. aegypti or whose structure-activity relationship potentially offered beneficial insights into structure optimization were screened against the insecticide-resistant, Puerto Rico (PR), strain of A. Aegypti, and it was discovered that not only did these N-arylamides typically show little resistance, some such as N-(2,6-dichloropyridin-4-yl)-2,2,3,3,4,4,4-heptafluorobutanamide (compound 36) and 2,2,3,3,4,4,4-heptafluoro-N-(3,4,5-trifluorophenyl)butanamide (compound 40) were actually more potent against the PR mosquitoes. Due to this promising insecticidal activity, five compounds were administered orally to mice to determine acute oral rodent toxicity. All five compounds were found to have mouse oral toxicity LD50 values well above the minimum safe level as set by the Innovative Vector Control Consortium (50 mg/kg). In addition to the promising biological activity documented here, we report the structure-activity relationship analysis used to guide the derivatization approach taken and to further inform future efforts in the development of N-arylamides as potential resistance-breaking, spatially acting insecticides.


Asunto(s)
Aedes , Insecticidas , Animales , Bioensayo , Insecticidas/farmacología , Ratones , Mosquitos Vectores , Relación Estructura-Actividad
20.
Saudi J Biol Sci ; 28(5): 3094-3099, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025184

RESUMEN

The tomato as both a fresh consumption and industrial product is one of the most profitable vegetables and has a large cultivation area in the world. Parallel to intense production activities, Tomato Spotted Wilt Virus (TSWV), like viral diseases, results in significant economic losses every year. Use of resistant cultivars is the most efficient and environmental-friendly method of fighting against these diseases. This study was conducted to develop new tomato genetic resources resistant to TSWV because of the Sw-5 resistance breaking (RB) isolates that were determined in tomato cultivation areas. In this study, a total of 40 tomato materials including 15 lines, 9 commercial varieties and 16 wild genotypes were by tested with molecular and biological testing methods. Mechanical inoculation method was used for biological testing and SCAR marker was used in molecular analysis. S. penellii, S. chmielewski, S. habrochaites, S. peruvianum and S. sitiens, LA0716, LA1028, LA1777, LA2744 and LA4110 genotypes were found as resistant against breaking isolates of Tomato Spotted Wilt Virus. These genotypes may be a good resistance source for the future breeding studies in tomato.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA