Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203993

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the resin-ceramic adhesion of a long-carbon-chain silane (LCSI)-containing resin cement. METHODS: Polished lithium disilicate ceramic discs were etched with hydrofluoric acid and randomly assigned into four groups; (PSAP), cemented using a silane-free resin cement with no prior priming; (PSAP-S), primed using a silane-containing primer before cementation using a silane-free resin cement; (PSAU), cemented using a LCSI-containing resin cement with no prior priming; (PSAU-S), primed as for the group (PSAP-S) and cemented using a LCSI-containing resin cement. The cemented blocks were sectioned into microbeams. The resin-ceramic microtensile bond strength (µTBS) was measured at 1 week and after thermocycling. The failure modes of the tested microbeams were evaluated. RESULTS: The µTBS of the LCSI-containing and silane-free resin cements, either with or without a prior priming step, did not significantly differ. The adhesion of the LCSI-containing resin cement to lithium disilicate ceramic, either with or without a prior priming step, did not significantly deteriorate after artificial aging. CONCLUSIONS: The long-carbon-chain silane (LCSI) monomer incorporated in the resin cement eliminated the need for a silane priming step of a hydrofluoric acid-etched lithium disilicate ceramic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA