Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 187: 179-187, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39038429

RESUMEN

The recycling of end-of-life wind turbine blades has become a global environmental challenge driven by the rapid growth of wind power. Pyrolysis is a promising method for recovering glass fibers from these discarded blades, but traditional pyrolysis is often operated at high temperatures, which degrades the mechanical properties of recovered fibers. To address this issue, a swelling-assisted pyrolysis method was proposed to recover high-quality glass fibers from end-of-life wind turbine blades at low temperatures. The results confirmed that the decomposition of the resin matrix within the blade was significantly promoted at low temperatures in the swelling-assisted pyrolysis process, achieving a resin decomposition ratio of 76.8 % at 350 °C. This improvement was attributed to enhanced heat transfer and co-pyrolysis with acetic acid. Swelling could physically disrupt the cross-linked structure of the blade, creating a more porous and layered structure, thereby enhancing heat transfer during the pyrolysis process. Simultaneously, the co-pyrolysis with acetic acid could generate hydrogen radicals, which promoted the cracking of macromolecular oligomers into lighter products or gaseous alkanes. Consequently, the formation of pyrolysis char within the solid pyrolysis product was reduced, shortening the oxidation duration to 30 min. In comparison to traditional pyrolysis, the swelling-assisted pyrolysis process effectively suppressed the diffusion of surface defects over the recovered fibers, leading to promising improvements in their flexibility, elasticity, and mechanical properties, with tensile strength notably increased by 27.5 %. These findings provided valuable insights into recovering high-quality glass fibers from end-of-life wind turbine blades.


Asunto(s)
Vidrio , Pirólisis , Reciclaje , Vidrio/química , Reciclaje/métodos , Viento , Calor , Centrales Eléctricas
2.
J Chromatogr A ; 1698: 463982, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37087858

RESUMEN

In the biopharmaceutical industry, chromatography resins have a finite number of uses before they start to age and degrade, typically due to losses of ligand integrity and/or density. The "health" of a column is predicted and validated by running multiple cycles on representative scale-down models and can be followed by real-time on-going validation during commercial production. Principal Component Analysis (PCA), Partial Least Square (PLS), Similarity Scores and Single One Point-MultiParameter Technique (SOP-MPT) along with machine learning principles were applied to explore the hypothesis that there is predictive capability of latent variables in chromatography absorbance profiles for process performance (step yield) and product quality (aggregates, fragments, host cell proteins (HCP) and DNA, and Protein A ligand). The first stage of this study is described in this paper: a MabSelect SuRe™ chromatography column was cycled with a method to establish the "normal" baseline for process performance and product quality, followed by runs using a harsher NaOH Cleaning in Place (CIP) procedure (with a higher NaOH concentration than that recommended by the vendor) to accelerate resin degradation. The different mathematical analytical tools correlated with resin degradation of the column (reflected in decreasing step yield and binding capacity with increasing running cycle), specifically when using the Wash, Elution and Strip phases of the chromatography method. Monomer, HCP and DNA content were not significantly impacted and therefore a correlation with product quality was inconsequential. Importantly, this work shows proof-of-concept that while more traditional methods of measuring resin integrity such as the height equivalent to a theoretical place (HETP) and Asymmetry (As) measurements could not detect changes in the integrity of the resin, PCA, PLS, Similarity Scores and SOP-MPT (to a lesser extent) applied to the absorbance data were capable of anticipating issues in the chromatography bed by identifying atypical outcomes.


Asunto(s)
Cromatografía de Afinidad , Cromatografía de Afinidad/instrumentación , Cromatografía de Afinidad/métodos , Proteínas , Hidróxido de Sodio/química , ADN/química , Modelos Químicos
3.
Polymers (Basel) ; 15(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36850074

RESUMEN

Composite insulators have gradually become the preferred approach for electrical insulation in power systems, especially in polluted areas. Composite insulators consist of three main components: the shed, rod, and end fitting. Insulators withstand mechanical stresses via rods that are composed of glass-fiber-reinforced epoxy (GFRE). However, regardless of the high tensile strength of GFRE rods, in real-life operation, abnormal fractures have frequently been reported all over the world, which substantially increase the risk of major accidents in power systems. Fractural accidents mainly consist of brittle and decay-like fractures, which exhibit rather different morphologies at the cross sections. Brittle fracture has been effectively eliminated, while the mechanism of decay-like fracture has still not been clearly revealed. In this study, surface discharge tests were applied to investigate the discharge influence on the degradation of GFRE. The test successfully simulated the composition variation of the rods in real-life composite insulators with decay-like fractures. Moreover, it confirmed that the distinction between the characteristics of brittle fracture and decay-like fracture stems from epoxy degradation due to hydrolysis and carbonization. In addition, the respective influences of the resin type, glass fiber type, and acid liquid immersion on the degradation process were probed, and the degradation mechanism proposed in this research was verified. Based on the results, measures for preventing the development of decay-like fractures in real-life operations were determined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA