Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chronobiol Int ; 37(4): 451-468, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31854192

RESUMEN

The lack of standardization of methods and procedures have hindered agreement in the literature related to time-of-day effects on repeated sprint performance and needs clarification. Therefore, the aim of the present study was to investigate and systematically review the evidence relating to time-of-day based on performance measures in repeated-sprints.The entire content of PubMed (MEDLINE), Scopus, SPORTDiscus® (via EBSCOhost) and Web of Science was searched. Only experimental research studies conducted in male adult participants aged ≥18yrs, published in English before June 2019 were included. Studies assessing repeated-sprints between a minimum of two time-points during the day (morning versus evening) were deemed eligible.The primary search revealed that a total of 10 out of 112 articles were considered eligible and subsequently included. Seven articles were deemed strong and three moderate quality. Eight studies found repeated-sprint performance across the first, first few, or all sprints, to increase in favor of the evening. The magnitude of difference is dependent on the modality and the exercise protocol used. The non-motorized treadmill established an average 3.5-8.5% difference in distance covered, average and peak velocity, and average power, across all sprints in three studies and in peak power in two studies. In cycling, power output differed across all sprints by 6.0% in one study and 8.0% for the first sprint only in five studies. All four studies measuring power decrement values (i.e. rate of fatigue) established differences up to 4.0% and two out of five studies established total work to be significantly higher by 8.0%.Repeated-sprint performance is affected by time-of-day with greater performance in the late/early afternoon. The magnitude is dependent on the variable assessed and the mode of exercise. There is a clear demand for more rigorous investigations which control factors that specifically relate to investigations of time-of-day and are specific to the sport of individuals.


Asunto(s)
Rendimiento Atlético , Deportes , Adulto , Ritmo Circadiano , Ejercicio Físico , Prueba de Esfuerzo , Fatiga , Humanos , Masculino
2.
Chronobiol Int ; 35(8): 1054-1065, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29566344

RESUMEN

The present study investigated whether increasing morning rectal temperatures (Trec) to evening levels, or increasing morning and evening Trec to an "optimal" level (38.5°C), resulting in increased muscle temperatures (Tm), would offset diurnal variation in repeated sprint (RS) performance in a causal manner. Twelve trained males underwent five sessions [age (mean ± SD) 21.0 ± 2.3 years, maximal oxygen consumption (V̇O2max) 60.0 ± 4.4 mL.kg-1 min-1, height 1.79 ± 0.06 m, body mass 78.2 ± 11.8 kg]. These included control morning (M, 07:30 h) and evening (E, 17:30 h) sessions (5-min warm-up), and three further sessions consisting of a warm-up morning trial (ME, in 39-40°C water) until Trec reached evening levels; two "optimal" trials in the morning and evening (M38.5 and E38.5, in 39-40°C water) respectively, until Trec reached 38.5°C. All sessions included 3 × 3-s task-specific warm-up sprints, thereafter 10 × 3-s RS with 30-s recoveries were performed a non-motorised treadmill. Trec and Tm measurements were taken at the start of the protocol and following the warm-up periods. Values for Trec and Tm at rest were higher in the evening compared to morning values (0.48°C and 0.69°C, p < 0.0005). RS performance was lower (7.8-8.3%) in the M for distance covered (DC; p = 0.002), average power (AP; p = 0.029) and average velocity (AV; p = 0.002). Increasing Trec in the morning to evening values or optimal values (38.5°C) did not increase RS performance to evening levels (p = 1.000). However, increasing Trec in the evening to "optimal" level through a passive warm-up significantly reduced DC (p = 0.008), AP (p < 0.0005) and AV (p = 0.007) to values found in the M condition (6.0-6.9%). Diurnal variation in Trec and Tm is not wholly accountable for time-of-day oscillations in RS performance on a non-motorised treadmill; the exact mechanism(s) for a causal link between central temperature and human performance are still unclear and require more research.


Asunto(s)
Regulación de la Temperatura Corporal , Ritmo Circadiano , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/fisiología , Resistencia Física , Recto/fisiología , Carrera , Humanos , Extremidad Inferior , Masculino , Consumo de Oxígeno , Factores de Tiempo , Adulto Joven
3.
Chronobiol Int ; 35(7): 959-968, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29557676

RESUMEN

The present study investigated whether increasing morning rectal temperatures (Trec) to resting.evening levels, or decreasing evening Trec or muscle (Tm) temperatures to morning values, would influence repeated sprint (RS) performance in a causal manner. Twelve trained males underwent five sessions [age (mean ± SD) 21.8 ± 2.6 yr, peak oxygen uptake ([Formula: see text] peak) 60.6 ± 4.6 mL kg min-1, stature 1.78 ± 0.07 m and body mass 76.0 ± 6.3 kg]. These included a control morning (M, 07:30 h) and evening (E, 17:30 h) session (5-min warm-up), and three further sessions consisting of a warm-up morning trial (ME, on a motorised treadmill) until Trec reached evening levels; and two cool-down evening trials (in 16-17°C water) until Trec (EMrec) or Tm (EMmuscle) values reached morning temperatures, respectively. All sessions included a 3 × 3-s task-specific warm-up followed by 10 × 3-s RS with 30-s recoveries performed on a non-motorised treadmill. Trec and Tm measurements were taken at the start of the protocol and following the warm-up or cool-down period. Values for Trec and Tm were higher in the evening compared to morning values (0.45°C and 0.57°C, P < 0.05). RS performance was lower in the M for distance covered (DC), average power (AP) and average velocity (AV) (9-10%, P < 0.05). Pre-cooling Trec and Tm in the evening reduced RS performance to levels observed in the morning (P < 0.05). However, an active warm-up resulted in no changes in morning RS performance. Diurnal variation in Trec and Tm is not wholly accountable for time-of-day oscillations in RS performance on a non-motorised treadmill; the exact mechanism(s) for a causal link between central temperature and human performance are still unclear and require more research.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos/fisiología , Ritmo Circadiano/fisiología , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Temperatura , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA