Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metab Eng Commun ; 18: e00241, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39021639

RESUMEN

The microbial production of value-added chemicals from renewable feedstocks is an important step towards a sustainable, bio-based economy. Therefore, microbes need to efficiently utilize lignocellulosic biomass and its dominant constituents, such as d-xylose. Pseudomonas taiwanensis VLB120 assimilates d-xylose via the five-step Weimberg pathway. However, the knowledge about the metabolic constraints of the Weimberg pathway, i.e., its regulation, dynamics, and metabolite fluxes, is limited, which hampers the optimization and implementation of this pathway for bioprocesses. We characterized the Weimberg pathway activity of P. taiwanensis VLB120 in terms of biomass growth and the dynamics of pathway intermediates. In batch cultivations, we found excessive accumulation of the intermediates d-xylonolactone and d-xylonate, indicating bottlenecks in d-xylonolactone hydrolysis and d-xylonate uptake. Moreover, the intermediate accumulation was highly dependent on the concentration of d-xylose and the extracellular pH. To encounter the apparent bottlenecks, we identified and overexpressed two genes coding for putative endogenous xylonolactonases PVLB_05820 and PVLB_12345. Compared to the control strain, the overexpression of PVLB_12345 resulted in an increased growth rate and biomass generation of up to 30 % and 100 %, respectively. Next, d-xylonate accumulation was decreased by overexpressing two newly identified d-xylonate transporter genes, PVLB_18545 and gntP (PVLB_13665). Finally, we combined xylonolactonase overexpression with enhanced uptake of d-xylonate by knocking out the gntP repressor gene gntR (PVLB_13655) and increased the growth rate and biomass yield by 50 % and 24 % in stirred-tank bioreactors, respectively. Our study contributes to the fundamental knowledge of the Weimberg pathway in pseudomonads and demonstrates how to encounter the metabolic bottlenecks of the Weimberg pathway to advance strain developments and cell factory design for bioprocesses on renewable feedstocks.

2.
Bioresour Technol ; 406: 131065, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969241

RESUMEN

Lithium-sulfur batteries are a promising alternative to lithium-ion batteries as they can potentially offer significantly increased capacities and energy densities. The ever-increasing global battery market demonstrates that there will be an ongoing demand for cost effective battery electrode materials. Materials derived from waste products can simultaneously address two of the greatest challenges of today, i.e., waste management and the requirement to develop sustainable materials. In this study, we detail the carbonisation of gelatin from blue shark and chitin from prawns, both of which are currently considered as waste biproducts of the seafood industry. The chemical and physical properties of the resulting carbons are compared through a correlation of results from structural characterisation techniques, including electron imaging, X-ray diffraction, Raman spectroscopy and nitrogen gas adsorption. We investigated the application of the resulting carbons as sulfur-hosting electrode materials for use in lithium-sulfur batteries. Through comprehensive electrochemical characterisation, we demonstrate that value added porous carbons, derived from marine waste are promising electrode materials for lithium-sulfur batteries. Both samples demonstrated impressive capacity retention when galvanostatically cycled at a rate of C/5 for 500 cycles. This study highlights the importance of looking towards waste products as sustainable feeds for battery material production.


Asunto(s)
Carbono , Suministros de Energía Eléctrica , Electrodos , Litio , Azufre , Residuos , Litio/química , Azufre/química , Carbono/química , Difracción de Rayos X , Espectrometría Raman
3.
Environ Sci Technol ; 58(31): 13748-13759, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39049709

RESUMEN

Biobased chemicals, crucial for the net-zero chemical industry, rely on lignocellulose residues as a major feedstock. However, its availability and environmental impacts vary greatly across regions. By 2050, we estimate that 3.0-5.2 Gt of these residues will be available from the global forest and agricultural sectors, with key contributions from Brazil, China, India, and the United States. This supply satisfies the growing global feedstock demands for plastics when used efficiently. Forest residues have 84% lower climate change impacts than agricultural residues on average globally but double the land-use-related biodiversity loss. Biobased plastics may reduce climate change impacts relative to fossil-based alternatives but are insufficient to fulfill net-zero targets. In addition, they pose greater challenges in terms of biodiversity loss and water stress. Avoiding feedstock sourcing from biodiversity-rich areas could halve lignocellulose residues-related biodiversity loss without significantly compromising availability. Improvements in region-specific feedstock sourcing, agricultural management and biomass utilization technologies are warranted for transitioning toward a sustainable chemical industry.


Asunto(s)
Agricultura , Lignina , Lignina/química , Industria Química , Biomasa , Biodiversidad , Cambio Climático , Bosques
4.
Bioresour Technol ; 400: 130640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554761

RESUMEN

As a byproduct of dairy production, the disposal of acid whey poses severe environmental challenges. Herein, an innovative solution involving metabolically engineering Clostridium saccharoperbutylacetonicum to convert all carbon sources in acid whey into sustainable biofuels and biochemicals was presented. By introducing several heterologous metabolic pathways relating to metabolisms of lactose, galactose, and lactate, the ultimately optimized strain, LM-09, exhibited exceptional performance by producing 15.1 g/L butanol with a yield of 0.33 g/g and a selectivity of 89.9%. Through further overexpression of alcohol acyl transferase, 2.7 g/L butyl acetate along with 6.4 g/L butanol was generated, resulting in a combined yield of 0.37 g/g. This study achieves the highest reported butanol titer and yield using acid whey as substrate in clostridia and marks pioneering production of esters using acid whey. The findings demonstrate an innovative bioprocess that enhances renewable feedstock biotransformation, thereby promoting economic viability and environmental sustainability of biomanufacturing.


Asunto(s)
Biocombustibles , Clostridium , Ingeniería Metabólica , Suero Lácteo , Suero Lácteo/metabolismo , Clostridium/metabolismo , Ingeniería Metabólica/métodos , Butanoles/metabolismo , Fermentación
5.
Front Chem ; 11: 1067488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742037

RESUMEN

Refiners around the globe are either considering or are actively replacing a portion of their crude oil inputs originating from fossil sources with alternative sources, including recycled materials (plastics, urban waste, mixed solid waste) and renewable materials (bio-mass waste, vegetable oils). In this paper, we explore such replacement, specifically focusing on the fluid catalytic cracking (FCC) operation. Five pyrolysis oils, obtained from municipal solid waste (MSW) and biogenic material (olive stones/pits), were fully characterized and tested at 10% loading against a standard fluid catalytic cracking (FCC) vacuum gasoil (VGO) feed in a bench scale reactor using an industrially available fluid catalytic cracking catalyst based on ultrastable Y zeolite to simulate fluid catalytic cracking co-processing. Despite having unique feed properties, including high Conradson carbon (e.g., up to 19.41 wt%), water (e.g., up to 5.7 wt%), and contaminants (e.g., up to 227 ppm Cl) in some cases, the five pyrolysis oils gave similar yield patterns as vacuum gasoil. Gasoline was slightly (ca. 1 wt%) higher in all cases and LPG slightly (ca. 1 wt%) lower. Olefinicity in the LPG streams were unchanged, bottoms and light cycle oil (LCO) showed no significant changes, while dry gas was slightly (up to -0.2 wt%) lower. Coke selectivity was also unchanged (maximum -7.7 wt%, relatively), suggesting minimal to no heat balance concerns when co-processing in an industrial fluid catalytic cracking unit. The results demonstrate the applicability of municipal solid waste and biogenic originating pyrolysis oils into a refinery. A catalyst design concept is explored, based on higher rare Earth oxide exchange and/or utilization of ZSM-5 zeolite, that would further minimize the impacts of replacing fossil oils with pyrolysis oils, namely one that shifts the 1% higher gasoline into LPG.

6.
Bioresour Technol ; 368: 128321, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36379295

RESUMEN

Bioconversion of sustainable feedstocks to commodity chemicals is considered as an effective solution for transforming the fossil-based economy into a carbon-neutral model. Here, the CO2-fixing bacterium Cupriavidus necator H16 was exploited for myo-inositol production from renewable substrates. First, by introducing the glucose transportation system, the glucose consumption route was established. Second, two key enzymes involved in myo-inositol biosynthesis were screened and evaluated. A myo-inositol-producing strain was constructed via overexpression of myo-inositol-3-phosphate synthase from Saccharomyces cerevisiae and inositol monophosphatase from Escherichia coli. Finally, carbon flux redirection was achieved through disruption of Entner-Doudoroff pathway and poly(3-hydroxybutyrate) synthesis pathway, resulting in a final myo-inositol production of 520.2, 1076.3 and 1054.8 mg/L from glucose, glycerol and CO2, respectively. The myo-inositol production level from CO2 achieved here set up the record. This study underlines the potential of C. necator to be utilized as microbial factory for upcycling the renewable feedstocks and CO2 to high-value biochemicals.


Asunto(s)
Cupriavidus necator , Cupriavidus necator/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ciclo del Carbono , Inositol , Glucosa/metabolismo
7.
Molecules ; 27(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408444

RESUMEN

Deep Eutectic Solvents have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness. One of the fields where DES prove to be particularly valuable is the synthesis and modification of inorganic materials-in particular, nanoparticles. In this field, the inherent structural inhomogeneity of DES results in a marked templating effect, which has led to an increasing number of studies focusing on exploiting these new reaction media to prepare nanomaterials. This review aims to provide a summary of the numerous and most recent achievements made in this area, reporting several examples of the newest mixtures obtained by mixing molecules originating from natural feedstocks, as well as linking them to the more consolidated methods that use "classical" DES, such as reline.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanopartículas/química , Solventes/química
8.
J Environ Manage ; 300: 113762, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34543967

RESUMEN

Biochar is a well-known carbon material with diversified functionalities and excellent physicochemical characteristics with high wastewater treatment potential. This review aims to summarize recent advancements in the development of biochar and biochar-based nanohybrid materials as a potential tool for the removal of harmful organic compounds such as synthetic dyes/effluents. The formation of biochar using pyrolysis of renewable feedstocks and their applications in various industries are explained hereafter. The characteristics and construction of biochar-based hybrid materials are explained in detail. Diversity of feedstocks, including municipal wastes, industrial byproducts, agricultural, and forestry residues, endows different biochar types with a wide structural variety. The production of cost-effective biochar drives the interest in manipulating biochars and induces desire functionality using nanoscale reinforcements. Various types of biochars, such as magnetic biochar, layered nanomaterial coated biochar, nanometallic oxide composites, chemically and physically functionalized biochar, have been produced. With the aid of nanomaterial, hybrid biochar exhibits a high potential to remove toxic contaminants. Depending upon biochar type, dyes/effluents can be removed via different mechanisms, including the Fenton process, photocatalytic degradation, π-π interaction, electrostatic interaction, and physical adsorption. In conclusion, desired physicochemical features, and tunable surface properties of biochar present high potential material in removing organic dyes and other effluents. The blended biochar with different materials/nanomaterials endows broader development and multi-functional opportunities for treating dyes/effluents.


Asunto(s)
Contaminantes Ambientales , Adsorción , Carbón Orgánico , Pirólisis
9.
Appl Microbiol Biotechnol ; 105(16-17): 6199-6213, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34410439

RESUMEN

Propionic acid is an important organic acid with wide industrial applications, especially in the food industry. It is currently produced from petrochemicals via chemical routes. Increasing concerns about greenhouse gas emissions from fossil fuels and a growing consumer preference for bio-based products have led to interest in fermentative production of propionic acid, but it is not yet competitive with chemical production. To improve the economic feasibility and sustainability of bio-propionic acid, fermentation performance in terms of concentration, yield, and productivity must be improved and the cost of raw materials must be reduced. These goals require robust microbial producers and inexpensive renewable feedstocks, so the present review focuses on bacterial producers of propionic acid and promising sources of substrates as carbon sources. Emphasis is placed on assessing the capacity of propionibacteria and the various approaches pursued in an effort to improve their performance through metabolic engineering. A wide range of substrates employed in propionic acid fermentation is analyzed with particular interest in the prospects of inexpensive renewable feedstocks, such as cellulosic biomass and industrial residues, to produce cost-competitive bio-propionic acid. KEY POINTS: • Fermentative propionic acid production emerges as competitor to chemical synthesis. • Various bacteria synthesize propionic acid, but propionibacteria are the best producers. • Biomass substrates hold promise to reduce propionic acid fermentation cost.


Asunto(s)
Propionatos , Propionibacterium , Fermentación , Ingeniería Metabólica
10.
Chemosphere ; 279: 130563, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34134408

RESUMEN

The study evaluated the preparation of a biocomposite using waste-derived polyhydroxybutyrate (PHB) and bagasse cellulose (α-cellulose) in a biorefinery approach. PHB was produced using dark fermentation effluent rich in volatile fatty acids (VFA) derived from vegetable waste and α-cellulose was extracted from sugarcane bagasse (SCB). Nutrient limitation induced microbial PHB accumulation, wherein maximum production of 0.28 ± 0.06 g PHB/g DCW (28%) was observed. Confocal examination showed the deposition of PHB granules in the cell cytoplasm and NMR spectrum exhibited a structural correlation. α-Cellulose (0.22 ± 0.02 g α-cellulose/g SCB) was extracted through SCB pretreatment. Thereafter, grafting α-cellulose with PHB offered intermolecular bonding, which resulted in enhanced thermal stability of the biocomposite than corresponding pristine PHB. FE-SEM morphological examination of biocomposite depicted that α-cellulose functioned as a filler to PHB. XRD profiles showed significant decrement in PHB crystallinity, signifying the functional role of α-cellulose as an effective reinforcing agent. Additionally, ether functional group of α-cellulose and ester group of PHB also appeared in XPS analysis of the composite, thus authorizing the effective blending of α-cellulose and PHB. Utilization of bagasse-derived cellulose for strengthening biologically produced PHB expands its applications, while simultaneously addressing the plastic pollution issues. Additional value from this process was further achieved by incorporating the concept of biorefinery, wherein acidogenic fermentation effluents were used for the production of PHA, which enabled the re-entry of products (VFA) to the production cycle, thus achieving circularity.


Asunto(s)
Celulosa , Saccharum , Ácidos Grasos Volátiles , Fermentación
11.
ACS Synth Biol ; 10(3): 478-486, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33625207

RESUMEN

1,3-Propanediol (1,3-PDO) is a promising platform chemical used to manufacture various polyesters, polyethers, and polyurethanes. Microbial production of 1,3-PDO using non-natural producers often requires adding expensive cofactors such as vitamin B12, which increases the whole production cost. In this study, we proposed and engineered a non-natural 1,3-PDO synthetic pathway derived from acetyl-CoA, enabling efficient accumulation of 1,3-PDO in Escherichia coli without adding expensive cofactors. This functional pathway was established by introducing the malonyl-CoA-dependent 3-hydroxypropionic acid (3-HP) module and screening the key enzymes to convert 3-HP to 1,3-PDO. The best engineered strain can produce 2.93 g/L 1,3-PDO with a yield of 0.35 mol/mol glucose in shake flask cultivation (and 7.98 g/L in fed-batch fermentation), which is significantly higher than previous reports based on homoserine- or malate-derived non-natural pathways. We also demonstrated for the first time the feasibility of producing 1,3-PDO from diverse carbohydrates including xylose, glycerol, and acetate based on the same pathway. Thus, this study provides an alternative route for 1,3-PDO production.


Asunto(s)
Escherichia coli/metabolismo , Glucosa/metabolismo , Ácido Láctico/análogos & derivados , Ingeniería Metabólica , Glicoles de Propileno/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Glicerol/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Glicoles de Propileno/química , Vitamina B 12/química , Xilosa/metabolismo
12.
Bioresour Bioprocess ; 8(1): 22, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38650227

RESUMEN

(R)-mandelic acid is an industrially important chemical, especially used for producing antibiotics. Its chemical synthesis often uses highly toxic cyanide to produce its racemic form, followed by kinetic resolution with 50% maximum yield. Here we report a green and sustainable biocatalytic method for producing (R)-mandelic acid from easily available styrene, biobased L-phenylalanine, and renewable feedstocks such as glycerol and glucose, respectively. An epoxidation-hydrolysis-double oxidation artificial enzyme cascade was developed to produce (R)-mandelic acid at 1.52 g/L from styrene with > 99% ee. Incorporation of deamination and decarboxylation into the above cascade enables direct conversion of L-phenylalanine to (R)-mandelic acid at 913 mg/L and > 99% ee. Expressing the five-enzyme cascade in an L-phenylalanine-overproducing E. coli NST74 strain led to the direct synthesis of (R)-mandelic acid from glycerol or glucose, affording 228 or 152 mg/L product via fermentation. Moreover, coupling of E. coli cells expressing L-phenylalanine biosynthesis pathway with E. coli cells expressing the artificial enzyme cascade enabled the production of 760 or 455 mg/L (R)-mandelic acid from glycerol or glucose. These simple, safe, and green methods show great potential in producing (R)-mandelic acid from renewable feedstocks.

13.
J Ind Microbiol Biotechnol ; 47(9-10): 753-787, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32894379

RESUMEN

The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures containing H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility operates continuously, the acetone-butanol-ethanol (ABE) fermentation is traditionally operated in batch mode. This review highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current industrial bioproduction of solvents.


Asunto(s)
Clostridium , Fermentación , 1-Butanol/metabolismo , Acetona/metabolismo , Bacterias Anaerobias/metabolismo , Biocombustibles , Biomasa , Butanoles/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Gases/metabolismo , Solventes
14.
Philos Trans A Math Phys Eng Sci ; 378(2176): 20190266, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32623990

RESUMEN

Polyethylene (PE) is the most important synthetic polymer material produced. Its excellent material properties arise from crystalline interactions in its hydrocarbon chains. This simple concept inspires studies of materials based on alternative non-fossil feedstocks and with additional traits such as a non-persistent nature. Renewable seed oil or microalgae oil lipids can serve as a feedstock for long-chain difunctional monomers. Catalytic conversion of their unsaturated fatty acids by e.g. isomerizing carbonylation or olefin metathesis yields long-chain monomers X-(CH2)n-X with 18-26 carbon atoms and terminal dicarboxy, diol or diamine groups (X), and ultralong-chain PE telechelics with 48 carbon atoms. These can be polymerized to polyesters, polycarbonates and other (ultra)long-chain polycondensates. These in many cases possess PE-like solid-state structure and properties. Unlike PE, they contain in-chain functional groups that can potentially enhance degradability. The crystalline and hydrophobic nature of the polymers decelerates degradation strongly compared to rapidly degrading shorter chain analogues. Our preliminary findings suggest that a non-persistent nature can be achieved for these materials. This review article is based on a lecture held at the Royal Society Discussion Meeting on Science to enable the circular economy. This article is part of a discussion meeting issue 'Science to enable the circular economy'.

15.
Front Bioeng Biotechnol ; 8: 606047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392171

RESUMEN

Due to the non-renewable nature of fossil fuels, microbial fermentation is considered a sustainable approach for chemical production using glucose, xylose, menthol, and other complex carbon sources represented by lignocellulosic biomass. Among these, xylose, methanol, arabinose, glycerol, and other alternative feedstocks have been identified as superior non-food sustainable carbon substrates that can be effectively developed for microbe-based bioproduction. Corynebacterium glutamicum is a model gram-positive bacterium that has been extensively engineered to produce amino acids and other chemicals. Recently, in order to reduce production costs and avoid competition for human food, C. glutamicum has also been engineered to broaden its substrate spectrum. Strengthening endogenous metabolic pathways or assembling heterologous ones enables C. glutamicum to rapidly catabolize a multitude of carbon sources. This review summarizes recent progress in metabolic engineering of C. glutamicum toward a broad substrate spectrum and diverse chemical production. In particularly, utilization of lignocellulosic biomass-derived complex hybrid carbon source represents the futural direction for non-food renewable feedstocks was discussed.

16.
Methods Enzymol ; 627: 215-247, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31630741

RESUMEN

The demand to develop sustainable polymers has increased in the last decades. Sustainable polymers contain some or all components that are derived from renewable resources. Carbohydrates, or saccharides, are one of the most abundant renewable biomass produced annually. Harnessing carbohydrates for building blocks of polymers can generate novel functional water-soluble materials. One of the examples is called glycopolymers, that are synthetic polymers having pendant saccharide moieties. In this report, we present the synthesis of glycomonomers, the precursors of glycopolymers, by enzymatic approaches. Some enzymes, like lipases, proteases, glycosidases, and glycosyltransferases, are exploited for this purpose. These enzymes catalyze the formation of ester or glycosidic bonds through transesterification reaction, reverse hydrolysis reaction, transglycosylation reaction, or glycosyl transfer from donors to acceptors.


Asunto(s)
Biocatálisis , Carbohidratos , Glicósido Hidrolasas/metabolismo , Glicosiltransferasas/metabolismo , Lipasa/metabolismo , Péptido Hidrolasas/metabolismo , Polímeros
17.
Int J Biol Macromol ; 140: 605-613, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31437499

RESUMEN

A library of known and new 4-aroyl-pyrano[3,2-c]chromenes have been synthesized through the one-pot, three-component reaction of 4-hydroxycoumarin, aryl glyoxals, and malononitrile or ethyl cyanoacetate in the presence of sodium alginate without any post modification, as a biopolymeric bifunctional organocatalyst, in EtOH under reflux conditions in short times. The desired products were obtained in high to excellent yields under optimized conditions. This procedure offers many advantages, such as operational simplicity, a green solvent system, short reaction times, high to excellent yields, simple work up and separation, and using a natural commercially available polysaccharide that is transition-metal-free, biodegradable and recoverable. Furthermore, sodium alginate can be recycled at least four times with negligible loss of its catalytic activity.


Asunto(s)
Alginatos/química , Benzopiranos/química , 4-Hidroxicumarinas/química , Acetatos/química , Catálisis , Tecnología Química Verde/métodos
18.
Microb Cell Fact ; 18(1): 116, 2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31255177

RESUMEN

BACKGROUND: Sucrose is an attractive industrial carbon source due to its abundance and the fact that it can be cheaply generated from sources such as sugarcane. However, only a few characterized Escherichia coli strains are able to metabolize sucrose, and those that can are typically slow growing or pathogenic strains. METHODS: To generate a platform strain capable of efficiently utilizing sucrose with a high growth rate, adaptive laboratory evolution (ALE) was utilized to evolve engineered E. coli K-12 MG1655 strains containing the sucrose utilizing csc genes (cscB, cscK, cscA) alongside the native sucrose consuming E. coli W. RESULTS: Evolved K-12 clones displayed an increase in growth and sucrose uptake rates of 1.72- and 1.40-fold on sugarcane juice as compared to the original engineered strains, respectively, while E. coli W clones showed a 1.4-fold increase in sucrose uptake rate without a significant increase in growth rate. Whole genome sequencing of evolved clones and populations revealed that two genetic regions were frequently mutated in the K-12 strains; the global transcription regulatory genes rpoB and rpoC, and the metabolic region related to a pyrimidine biosynthetic deficiency in K-12 attributed to pyrE expression. These two mutated regions have been characterized to confer a similar benefit when glucose is the main carbon source, and reverse engineering revealed the same causal advantages on M9 sucrose. Additionally, the most prevalent mutation found in the evolved E. coli W lineages was the inactivation of the cscR gene, the transcriptional repression of sucrose uptake genes. CONCLUSION: The generated K-12 and W platform strains, and the specific sets of mutations that enable their phenotypes, are available as valuable tools for sucrose-based industrial bioproduction in the facile E. coli chassis.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Sacarosa/metabolismo , Evolución Molecular Dirigida , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ingeniería Genética , Genoma Bacteriano , Glucosa/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
19.
Food Technol Biotechnol ; 56(3): 289-311, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30510474

RESUMEN

Production of biofuels from renewable feedstocks has captured considerable scientific attention since they could be used to supply energy and alternative fuels. Bioethanol is one of the most interesting biofuels due to its positive impact on the environment. Currently, it is mostly produced from sugar- and starch-containing raw materials. However, various available types of lignocellulosic biomass such as agricultural and forestry residues, and herbaceous energy crops could serve as feedstocks for the production of bioethanol, energy, heat and value-added chemicals. Lignocellulose is a complex mixture of carbohydrates that needs an efficient pretreatment to make accessible pathways to enzymes for the production of fermentable sugars, which after hydrolysis are fermented into ethanol. Despite technical and economic difficulties, renewable lignocellulosic raw materials represent low-cost feedstocks that do not compete with the food and feed chain, thereby stimulating the sustainability. Different bioprocess operational modes were developed for bioethanol production from renewable raw materials. Furthermore, alternative bioethanol separation and purification processes have also been intensively developed. This paper deals with recent trends in the bioethanol production as a fuel from different renewable raw materials as well as with its separation and purification processes.

20.
Crit Rev Biotechnol ; 38(4): 620-633, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28954540

RESUMEN

Erythritol is a natural sweetener commonly used in the food and pharmaceutical industries. Produced by microorganisms as an osmoprotectant, it is an ideal sucrose substitute for diabetics or overweight persons due to its almost zero calorie content. Currently, erythritol is produced on an industrial scale through the fermentation of sugars by some yeasts, such as Moniliella sp. However, the popularity of erythritol as a sweetener is still small because of its high retail price. This creates an opportunity for further process improvement. Recent years have brought the rapid development of erythritol biosynthesis methods from the low-cost substrates, and a better understanding of the metabolic pathways leading to erythritol synthesis. The yeast Yarrowia lipolytica emerges as an organism effectively producing erythritol from pure or crude glycerol. Moreover, novel erythritol producing organisms and substrates may be taken into considerations due to metabolic engineering. This review focuses on the modification of erythritol production to use low-cost substrates and metabolic engineering of the microorganisms in order to improve yield and productivity.


Asunto(s)
Eritritol/biosíntesis , Fermentación/fisiología , Glicerol/metabolismo , Humanos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/fisiología , Yarrowia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA