RESUMEN
Mammalian hippocampal circuits undergo extensive remodeling through adult neurogenesis. While this process has been widely studied, the specific contribution of adult-born granule cells (aGCs) to spatial operations in the hippocampus remains unknown. Here, we show that optogenetic activation of 4-week-old (young) aGCs in free-foraging mice produces a non-reversible reconfiguration of spatial maps in proximal CA3 while rarely evoking neural activity. Stimulation of the same neuronal cohort on subsequent days recruits CA3 neurons with increased efficacy but fails to induce further remapping. In contrast, stimulation of 8-week-old (mature) aGCs can reliably activate CA3 cells but produces no alterations in spatial maps. Our results reveal a unique role of young aGCs in remodeling CA3 representations, a potential that can be depleted and is lost with maturation. This ability could contribute to generate orthogonalized downstream codes supporting pattern separation.
Asunto(s)
Células-Madre Neurales , Humanos , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Encéfalo , Neurogénesis/fisiología , Giro Dentado/fisiología , MamíferosRESUMEN
Visual perception is the product of serial hierarchical processing, parallel processing, and remapping on a dynamic network involving several topographically organized cortical visual areas. Here, we will focus on the topographical organization of cortical areas and the different kinds of visual maps found in the primate brain. We will interpret our findings in light of a broader representational framework for perception. Based on neurophysiological data, our results do not support the notion that vision can be explained by a strict representational model, where the objective visual world is faithfully represented in our brain. On the contrary, we find strong evidence that vision is an active and constructive process from the very initial stages taking place in the eye and from the very initial stages of our development. A constructive interplay between perceptual and motor systems (e.g., during saccadic eye movements) is actively learnt from early infancy and ultimately provides our fluid stable visual perception of the world.
Asunto(s)
Movimientos Sacádicos , Percepción Visual , Animales , Percepción Visual/fisiología , Encéfalo , Primates , Mapeo EncefálicoRESUMEN
Whenever we navigate through different contexts, we build a cognitive map: an internal representation of the territory. Spatial navigation is a complex skill that involves multiple types of information processing and integration. Place cells and grid cells, collectively with other hippocampal and medial entorhinal cortex neurons (MEC), form a neural network whose activity is critical for the representation of self-position and orientation along with spatial memory retrieval. Furthermore, this activity generates new representations adapting to changes in the environment. Though there is a normal decline in spatial memory related to aging, this is dramatically increased in pathological conditions such as Alzheimer's disease (AD). AD is a multi-factorial neurodegenerative disorder affecting mainly the hippocampus-entorhinal cortex (HP-EC) circuit. Consequently, the initial stages of the disease have disorientation and wandering behavior as two of its hallmarks. Recent electrophysiological studies have linked spatial memory deficits to difficulties in spatial information encoding. Here we will discuss map impairment and remapping disruption in the HP-EC network, as a possible circuit mechanism involved in the spatial memory and navigation deficits observed in AD, pointing out the benefits of virtual reality as a tool for early diagnosis and rehabilitation.