Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.255
Filtrar
1.
J Imaging Inform Med ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249582

RESUMEN

PelviNet introduces a groundbreaking multi-agent convolutional network architecture tailored for enhancing pelvic image registration. This innovative framework leverages shared convolutional layers, enabling synchronized learning among agents and ensuring an exhaustive analysis of intricate 3D pelvic structures. The architecture combines max pooling, parametric ReLU activations, and agent-specific layers to optimize both individual and collective decision-making processes. A communication mechanism efficiently aggregates outputs from these shared layers, enabling agents to make well-informed decisions by harnessing combined intelligence. PelviNet's evaluation centers on both quantitative accuracy metrics and visual representations to elucidate agents' performance in pinpointing optimal landmarks. Empirical results demonstrate PelviNet's superiority over traditional methods, achieving an average image-wise error of 2.8 mm, a subject-wise error of 3.2 mm, and a mean Euclidean distance error of 3.0 mm. These quantitative results highlight the model's efficiency and precision in landmark identification, crucial for medical contexts such as radiation therapy, where exact landmark identification significantly influences treatment outcomes. By reliably identifying critical structures, PelviNet advances pelvic image analysis and offers potential enhancements for broader medical imaging applications, marking a significant step forward in computational healthcare.

2.
Neural Netw ; 180: 106675, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39241435

RESUMEN

The next basket recommendation task aims to predict the items in the user's next basket by modeling the user's basket sequence. Existing next basket recommendations focus on improving recommendation performance, and most of these methods are black-box models, ignoring the importance of providing explanations to improve user satisfaction. Furthermore, most next basket recommendation methods are designed for consumer users, and few methods are proposed for business user characteristics. To address the above problems, we propose a Knowledge Reinforced Explainable Next Basket Recommendation (KRE-NBR). Specifically, we construct a basket-based knowledge graph and obtain pretrained embeddings of entities that contain rich information of the knowledge graph. To obtain high-quality user predictive vectors, we fuse user pretrained embeddings, user basket sequence level embeddings, and user repurchase embeddings. One highlight of the user repurchase embeddings is that they are able to model business user repurchase behavior. To make the results of next basket recommendations explainable, we use reinforcement learning for path reasoning to find the items recommended in the next basket and generate recommendation explanations at the same time. To the best of our knowledge, this is the first work to provide recommendation explanations for next basket recommendations. Extensive experiments on real datasets show that the recommendation performance of our proposed approach outperforms several state-of-the-art baselines.

3.
Artif Organs ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289857

RESUMEN

BACKGROUND: The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload-based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm. METHODS: The deep reinforcement learning control is built upon data derived from a deterministic high-fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end-systolic elastance, and left ventricular end-systolic elastance, to replicate realistic inter- and intra-patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end-diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta. RESULTS: The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end-diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively. CONCLUSION: This work implements a deep reinforcement learning controller in a high-fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy.

4.
Behav Brain Res ; 476: 115251, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271022

RESUMEN

This study investigated the risk to social behavior and cognitive flexibility induced by chronic social defeat stress (CSDS) during early and late adolescence (EA and LA). Utilizing the "resident-intruder" stress paradigm, adolescent male Sprague-Dawley rats were exposed to CSDS during either EA (postnatal days 29-38) or LA (postnatal days 39-48) to explore how social defeat at different stages of adolescence affects behavioral and cognitive symptoms commonly associated with psychiatric disorders. After stress exposure, the rats were assessed for anxiety-like behavior in the elevated plus maze, social interaction, and cognitive flexibility through set-shifting and reversal-learning tasks under immediate and delayed reward conditions. The results showed that CSDS during EA, but not LA, led to impaired cognitive flexibility in adulthood, as evidenced by increased perseverative and regressive errors in the set-shifting and reversal-learning tasks, particularly under the delayed reward condition. This suggests that the timing of stress exposure during development has a significant impact on the long-term consequences for behavioral and cognitive function. The findings highlight the vulnerability of the prefrontal cortex, which undergoes critical maturation during early adolescence, to the effects of social stress. Overall, this study demonstrates that the timing of social stressors during adolescence can differentially shape the developmental trajectory of cognitive flexibility, with important implications for understanding the link between childhood/adolescent adversity and the emergence of psychiatric disorders.

5.
Sensors (Basel) ; 24(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39275469

RESUMEN

Mobile Edge Computing (MEC) is crucial for reducing latency by bringing computational resources closer to the network edge, thereby enhancing the quality of services (QoS). However, the broad deployment of cloudlets poses challenges in efficient network slicing, particularly when traffic distribution is uneven. Therefore, these challenges include managing diverse resource requirements across widely distributed cloudlets, minimizing resource conflicts and delays, and maintaining service quality amid fluctuating request rates. Addressing this requires intelligent strategies to predict request types (common or urgent), assess resource needs, and allocate resources efficiently. Emerging technologies like edge computing and 5G with network slicing can handle delay-sensitive IoT requests rapidly, but a robust mechanism for real-time resource and utility optimization remains necessary. To address these challenges, we designed an end-to-end network slicing approach that predicts common and urgent user requests through T distribution. We formulated our problem as a multi-agent Markov decision process (MDP) and introduced a multi-agent soft actor-critic (MAgSAC) algorithm. This algorithm prevents the wastage of scarce resources by intelligently activating and deactivating virtual network function (VNF) instances, thereby balancing the allocation process. Our approach aims to optimize overall utility, balancing trade-offs between revenue, energy consumption costs, and latency. We evaluated our method, MAgSAC, through simulations, comparing it with the following six benchmark schemes: MAA3C, SACT, DDPG, S2Vec, Random, and Greedy. The results demonstrate that our approach, MAgSAC, optimizes utility by 30%, minimizes energy consumption costs by 12.4%, and reduces execution time by 21.7% compared to the closest related multi-agent approach named MAA3C.

6.
Heliyon ; 10(17): e37108, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286127

RESUMEN

This study assessed root reinforcement on slopes influenced by various herbaceous species. The study examined the distribution, structural traits of these species, and their root systems, as well as their biomass. We established a quantitative model for evaluating root reinforcement at the soil interface influenced by different herbaceous colonizers. The focus was on a mining environment, specifically measuring root reinforcement at a dumpsite slope. The results showed that the herbaceous plants in the dumpsite included Candian fleabane (Conyza canadensis), Annual bluegrass (Poa annua), and Suaeda (Suaeda glauca), and the weights of the three herbaceous plants in descending order were Annual bluegrass, Candian fleabane, and Suaeda. Notably, the tensile strength of annual bluegrass roots peaked when diameters were less than 0.4 mm. Statistical analysis revealed significant variations in root tensile strength (p < 0.05, ANCOVA), root area ratio, and reinforcement (average values from 0 to 10 cm, p < 0.05, ANOVA) among the species. Canadian fleabane demonstrated the greatest root area ratio and reinforcement throughout the soil profiles. The integration of these herbaceous species increased the surface layer's stability of the slope by 21.6 % and marginally expanded the cross-sectional area of the landslide mass.

7.
Polymers (Basel) ; 16(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274067

RESUMEN

This investigation explores the fabrication of polymer matrix nanocomposites via additive manufacturing (AM), using a UV photopolymerization resin and copper nanoparticles (Cu-NPs) with vat photopolymerization 3D printing technology. The aim in this study is to investigate the mentioned materials in different formulations in terms of inexpensive processing, the property related variability, and targeting multifunctional applications. After the AM process, samples were post-cured with UV light in order to obtain better mechanical properties. The particles and resin were mixed using an ultrasonicator, and the particle contents used were 0.0, 0.5, and 1.0 wt %. The process used in this investigation was simple and inexpensive, as the technologies used are quite accessible, from the 3D printer to the UV curing device. These formulations were characterized with scanning electron microscopy (SEM) to observe the materials' microstructure and tensile tests to quantify stress-strain derived properties. Results showed that, besides the simplicity of the process, the mixing was effective, which was observed in the scanning electron microscope. Additionally, the tensile strength was increased with the UV irradiation exposure, while the strain properties did not change significantly.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39285110

RESUMEN

PURPOSE: Countertraction is a vital technique in laparoscopic surgery, stretching the tissue surface for incision and dissection. Due to the technical challenges and frequency of countertraction, autonomous countertraction has the potential to significantly reduce surgeons' workload. Despite several methods proposed for automation, achieving optimal tissue visibility and tension for incision remains unrealized. Therefore, we propose a method for autonomous countertraction that enhances tissue surface planarity and visibility. METHODS: We constructed a neural network that integrates a point cloud convolutional neural network (CNN) with a deep reinforcement learning (RL) model. This network continuously controls the forceps position based on the surface shape observed by a camera and the forceps position. RL is conducted in a physical simulation environment, with verification experiments performed in both simulation and phantom environments. The evaluation was performed based on plane error, representing the average distance between the tissue surface and its least-squares plane, and angle error, indicating the angle between the tissue surface vector and the camera's optical axis vector. RESULTS: The plane error decreased under all conditions both simulation and phantom environments, with 93.3% of case showing a reduction in angle error. In simulations, the plane error decreased from 3.6 ± 1.5 mm to 1.1 ± 1.8 mm , and the angle error from 29 ± 19 ∘ to 14 ± 13 ∘ . In the phantom environment, the plane error decreased from 0.96 ± 0.24 mm to 0.39 ± 0.23 mm , and the angle error from 32 ± 29 ∘ to 17 ± 20 ∘ . CONCLUSION: The proposed neural network was validated in both simulation and phantom experimental settings, confirming that traction control improved tissue planarity and visibility. These results demonstrate the feasibility of automating countertraction using the proposed model.

9.
Elife ; 132024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240757

RESUMEN

Theoretical computational models are widely used to describe latent cognitive processes. However, these models do not equally explain data across participants, with some individuals showing a bigger predictive gap than others. In the current study, we examined the use of theory-independent models, specifically recurrent neural networks (RNNs), to classify the source of a predictive gap in the observed data of a single individual. This approach aims to identify whether the low predictability of behavioral data is mainly due to noisy decision-making or misspecification of the theoretical model. First, we used computer simulation in the context of reinforcement learning to demonstrate that RNNs can be used to identify model misspecification in simulated agents with varying degrees of behavioral noise. Specifically, both prediction performance and the number of RNN training epochs (i.e., the point of early stopping) can be used to estimate the amount of stochasticity in the data. Second, we applied our approach to an empirical dataset where the actions of low IQ participants, compared with high IQ participants, showed lower predictability by a well-known theoretical model (i.e., Daw's hybrid model for the two-step task). Both the predictive gap and the point of early stopping of the RNN suggested that model misspecification is similar across individuals. This led us to a provisional conclusion that low IQ subjects are mostly noisier compared to their high IQ peers, rather than being more misspecified by the theoretical model. We discuss the implications and limitations of this approach, considering the growing literature in both theoretical and data-driven computational modeling in decision-making science.


Asunto(s)
Conducta de Elección , Redes Neurales de la Computación , Humanos , Conducta de Elección/fisiología , Simulación por Computador , Procesos Estocásticos , Refuerzo en Psicología , Masculino , Femenino , Toma de Decisiones/fisiología , Adulto , Adulto Joven
10.
Neural Netw ; 180: 106710, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270347

RESUMEN

For current image caption tasks used to encode region features and grid features Transformer-based encoders have become commonplace, because of their multi-head self-attention mechanism, the encoder can better capture the relationship between different regions in the image and contextual information. However, stacking Transformer blocks necessitates quadratic computation through self-attention to visual features, not only resulting in the computation of numerous redundant features but also significantly increasing computational overhead. This paper presents a novel Distilled Cross-Combination Transformer (DCCT) network. Technically, we first introduce a distillation cascade fusion encoder (DCFE), where a probabilistic sparse self-attention layer is used to filter out some redundant and distracting features that affect attention focus, aiming to obtain more refined visual features and enhance encoding efficiency. Next, we develop a parallel cross-fusion attention module (PCFA) that fully exploits the complementarity and correlation between grid and region features to better fuse the encoded dual visual features. Extensive experiments conducted on the MSCOCO dataset demonstrate that our proposed DCCT method achieves outstanding performance, rivaling current state-of-the-art approaches.

11.
Neurobiol Learn Mem ; : 107985, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270814

RESUMEN

Reinforcement learning, crucial for behavior in dynamic environments, is driven by rewards and punishments, modulated by dopamine (DA) changes. This study explores the dopaminergic system's influence on learning, particularly in Parkinson's Disease (PD), where medication leads to impaired adaptability. Highlighting the role of tonic DA in signaling the valence of actions, this research investigates how DA affects response vigor and decision-making in PD. DA not only influences reward and punishment learning but also indicates the cognitive effort level and risk propensity in actions, which are essential for understanding and managing PD symptoms. In this work, we adapt our existing neurocomputational model of basal ganglia (BG) to simulate two reversal learning tasks proposed by Cools et al. We first optimized a Hebb rule for both probabilistic and deterministic reversal learning, conducted a sensitivity analysis (SA) on parameters related to DA effect, and compared performances between three groups: PD-ON, PD-OFF, and control subjects. In our deterministic task simulation, we explored switch error rates after unexpected task switches and found a U-shaped relationship between tonic DA levels and switch error frequency. Through SA, we classify these three groups. Then, assuming that the valence of the stimulus affects the tonic levels of DA, we were able to reproduce the results by Cools et al. As for the probabilistic task simulation, our results are in line with clinical data, showing similar trends with PD-ON, characterized by higher tonic DA levels that are correlated with increased difficulty in both acquisition and reversal tasks. Our study proposes a new hypothesis: valence, signaled by tonic DA levels, influences learning in PD, confirming the uncorrelation between phasic and tonic DA changes. This hypothesis challenges existing paradigms and opens new avenues for understanding cognitive processes in PD, particularly in reversal learning tasks.

12.
J Affect Disord ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271064

RESUMEN

BACKGROUND: Aspects of reinforcement learning have been associated with specific depression symptoms and may inform the course of depressive illness. METHODS: We applied support vector machines to investigate whether blood­oxygen-level dependent (BOLD) responses linked with neural prediction error (nPE) and neural expected value (nEV) from a probabilistic learning task could forecast depression remission. We investigated whether predictions were moderated by treatment use or symptoms. Participants included 55 individuals (n = 39 female) with a depression diagnosis at baseline; 36 of these individuals completed standard cognitive behavioral therapy and 19 were followed during naturalistic course of illness. All participants were assessed for depression diagnosis at a follow-up visit. RESULTS: Both nPE and nEV classifiers forecasted remission significantly better than null classifiers. The nEV classifier performed significantly better than the nPE classifier. We found no main or interaction effects of treatment status on nPE or nEV accuracy. We found a significant interaction between nPE-forecasted remission status and anhedonia, but not for negative affect or anxious arousal, when controlling for nEV-forecasted remission status. LIMITATIONS: Our sample size, while comparable to that of other studies, limits options for maximizing and evaluating model performance. We addressed this with two standard methods for optimizing model performance (90:10 train and test scheme and bootstrapped sampling). CONCLUSIONS: Results support nEV and nPE as relevant biobehavioral signals for understanding depression outcome independent of treatment status, with nEV being stronger than nPE as a predictor of remission. Reinforcement learning variables may be useful components of an individualized medicine framework for depression healthcare.

13.
Behav Res Methods ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271633

RESUMEN

Computerized adaptive testing (CAT) aims to present items that statistically optimize the assessment process by considering the examinee's responses and estimated trait levels. Recent developments in reinforcement learning and deep neural networks provide CAT with the potential to select items that utilize more information across all the items on the remaining tests, rather than just focusing on the next several items to be selected. In this study, we reformulate CAT under the reinforcement learning framework and propose a new item selection strategy based on the deep Q-network (DQN) method. Through simulated and empirical studies, we demonstrate how to monitor the training process to obtain the optimal Q-networks, and we compare the accuracy of the DQN-based item selection strategy with that of five traditional strategies-maximum Fisher information, Fisher information weighted by likelihood, Kullback‒Leibler information weighted by likelihood, maximum posterior weighted information, and maximum expected information-on both simulated and real item banks and responses. We further investigate how sample size and the distribution of the trait levels of the examinees used in training affect DQN performance. The results show that DQN achieves lower RMSE and MAE values than traditional strategies under simulated and real banks and responses in most conditions. Suggestions for the use of DQN-based strategies are provided, as well as their code.

14.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275567

RESUMEN

The platooning of cars and trucks is a pertinent approach for autonomous driving due to the effective utilization of roadways. The decreased gas consumption levels are an added merit owing to sustainability. Conventional platooning depended on Dedicated Short-Range Communication (DSRC)-based vehicle-to-vehicle communications. The computations were executed by the platoon members with their constrained capabilities. The advent of 5G has favored Intelligent Transportation Systems (ITS) to adopt Multi-access Edge Computing (MEC) in platooning paradigms by offloading the computational tasks to the edge server. In this research, vital parameters in vehicular platooning systems, viz. latency-sensitive radio resource management schemes, and Age of Information (AoI) are investigated. In addition, the delivery rates of Cooperative Awareness Messages (CAM) that ensure expeditious reception of safety-critical messages at the roadside units (RSU) are also examined. However, for latency-sensitive applications like vehicular networks, it is essential to address multiple and correlated objectives. To solve such objectives effectively and simultaneously, the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework necessitates a better and more sophisticated model to enhance its ability. In this paper, a novel Cascaded MADDPG framework, CMADDPG, is proposed to train cascaded target critics, which aims at achieving expected rewards through the collaborative conduct of agents. The estimation bias phenomenon, which hinders a system's overall performance, is vividly circumvented in this cascaded algorithm. Eventually, experimental analysis also demonstrates the potential of the proposed algorithm by evaluating the convergence factor, which stabilizes quickly with minimum distortions, and reliable CAM message dissemination with 99% probability. The average AoI quantity is maintained within the 5-10 ms range, guaranteeing better QoS. This technique has proven its robustness in decentralized resource allocation against channel uncertainties caused by higher mobility in the environment. Most importantly, the performance of the proposed algorithm remains unaffected by increasing platoon size and leading channel uncertainties.

15.
Sensors (Basel) ; 24(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275702

RESUMEN

Underwater acoustic sensor networks (UASNs) are fundamental assets to enable discovery and utilization of sub-sea environments and have attracted both academia and industry to execute long-term underwater missions. Given the heightened significance of battery dependency in underwater wireless sensor networks, our objective is to maximize the amount of harvested energy underwater by adopting the TDMA time slot scheduling approach to prolong the operational lifetime of the sensors. In this study, we considered the spatial uncertainty of underwater ambient resources to improve the utilization of available energy and examine a stochastic model for piezoelectric energy harvesting. Considering a realistic channel and environment condition, a novel multi-agent reinforcement learning algorithm is proposed. Nodes observe and learn from their choice of transmission slots based on the available energy in the underwater medium and autonomously adapt their communication slots to their energy harvesting conditions instead of relying on the cluster head. In the numerical results, we present the impact of piezoelectric energy harvesting and harvesting awareness on three lifetime metrics. We observe that energy harvesting contributes to 4% improvement in first node dead (FND), 14% improvement in half node dead (HND), and 22% improvement in last node dead (LND). Additionally, the harvesting-aware TDMA-RL method further increases HND by 17% and LND by 38%. Our results show that the proposed method improves in-cluster communication time interval utilization and outperforms traditional time slot allocation methods in terms of throughput and energy harvesting efficiency.

16.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39256196

RESUMEN

Using amino acid residues in peptide generation has solved several key problems, including precise control of amino acid sequence order, customized peptides for property modification, and large-scale peptide synthesis. Proteins contain unknown amino acid residues. Extracting them for the synthesis of drug-like peptides can create novel structures with unique properties, driving drug development. Computer-aided design of novel peptide drug molecules can solve the high-cost and low-efficiency problems in the traditional drug discovery process. Previous studies faced limitations in enhancing the bioactivity and drug-likeness of polypeptide drugs due to less emphasis on the connection relationships in amino acid structures. Thus, we proposed a reinforcement learning-driven generation model based on graph attention mechanisms for peptide generation. By harnessing the advantages of graph attention mechanisms, this model effectively captured the connectivity structures between amino acid residues in peptides. Simultaneously, leveraging reinforcement learning's strength in guiding optimal sequence searches provided a novel approach to peptide design and optimization. This model introduces an actor-critic framework with real-time feedback loops to achieve dynamic balance between attributes, which can customize the generation of multiple peptides for specific targets and enhance the affinity between peptides and targets. Experimental results demonstrate that the generated drug-like peptides meet specified absorption, distribution, metabolism, excretion, and toxicity properties and bioactivity with a success rate of over 90$\%$, thereby significantly accelerating the process of drug-like peptide generation.


Asunto(s)
Péptidos , Péptidos/química , Secuencia de Aminoácidos , Descubrimiento de Drogas , Diseño de Fármacos , Algoritmos , Diseño Asistido por Computadora , Humanos
17.
Biostatistics ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226534

RESUMEN

Major depressive disorder (MDD), a leading cause of years of life lived with disability, presents challenges in diagnosis and treatment due to its complex and heterogeneous nature. Emerging evidence indicates that reward processing abnormalities may serve as a behavioral marker for MDD. To measure reward processing, patients perform computer-based behavioral tasks that involve making choices or responding to stimulants that are associated with different outcomes, such as gains or losses in the laboratory. Reinforcement learning (RL) models are fitted to extract parameters that measure various aspects of reward processing (e.g. reward sensitivity) to characterize how patients make decisions in behavioral tasks. Recent findings suggest the inadequacy of characterizing reward learning solely based on a single RL model; instead, there may be a switching of decision-making processes between multiple strategies. An important scientific question is how the dynamics of strategies in decision-making affect the reward learning ability of individuals with MDD. Motivated by the probabilistic reward task within the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel RL-HMM (hidden Markov model) framework for analyzing reward-based decision-making. Our model accommodates decision-making strategy switching between two distinct approaches under an HMM: subjects making decisions based on the RL model or opting for random choices. We account for continuous RL state space and allow time-varying transition probabilities in the HMM. We introduce a computationally efficient Expectation-maximization (EM) algorithm for parameter estimation and use a nonparametric bootstrap for inference. Extensive simulation studies validate the finite-sample performance of our method. We apply our approach to the EMBARC study to show that MDD patients are less engaged in RL compared to the healthy controls, and engagement is associated with brain activities in the negative affect circuitry during an emotional conflict task.

18.
Sci Rep ; 14(1): 20566, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232076

RESUMEN

To investigate the effects of high temperature and carbon fiber-bar reinforcement on the dynamic mechanical properties of concrete materials, a muffle furnace was used to treat two kinds of specimens, plain and carbon fiber-bar reinforced concrete, at high temperatures of 25, 200, 400 and 600 °C. Impact compression tests were carried out on two specimens after high-temperature exposure using a Hopkinson pressure bar (SHPB) test setup combined with a high-speed camera device to observe the crack extension process of the specimens. The effects of high temperature and carbon fiber-bar reinforcement on the peak stress, energy dissipation density, crack propagation and fractal dimension of the concrete were analyzed. The results showed that the corresponding peak strengths of the plain concrete specimens at 25, 200, 400, and 600 °C were 88.37, 93.21, 68.85, and 54.90 MPa, respectively, and the peak strengths after the high-temperature exposure first increased slightly and then decreased rapidly. The mean peak strengths corresponding to the carbon fiber-bar reinforced concrete specimens after high-temperature action at 25, 200, 400, and 600 °C are 1.13, 1.13, 1.21, and 1.19 times that of plain concrete, respectively, and the mean crushing energy consumption densities are 1.27, 1.31, 1.73, and 1.59 times that of plain concrete, respectively. The addition of carbon fiber-bar reinforcement significantly enhanced the impact resistance and energy dissipation of the concrete structure, and the higher the temperature was, the more significant the increase. An increase in temperature increases the number of crack extensions and width, and the high tensile strength of the carbon fiber-bar reinforcement and the synergistic effect with the concrete material reduce the degree of crack extension in the specimen. The fractal dimension of the concrete ranged from 1.92 to 2.68, that of the carbon fiber-bar reinforced concrete specimens ranged from 1.61 to 2.42, and the mean values of the corresponding fractal dimensions of the plain concrete specimens after high-temperature effects at 25, 200, 400, and 600 °C were 1.19, 1.21, 1.10, and 1.11 times those of the fiber-reinforced concrete specimens, respectively. The incorporation of carbon fiber-bar reinforcement reduces the degree of rupture and fragmentation of concrete under impact loading and improves the safety and stability of concrete structures.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39221769

RESUMEN

AIM: A new closed-loop functional magnetic resonance imaging method called multivoxel neuroreinforcement has the potential to alleviate the subjective aversiveness of exposure-based interventions by directly inducing phobic representations in the brain, outside of conscious awareness. The current study seeks to test this method as an intervention for specific phobia. METHODS: In a randomized, double-blind, controlled single-university trial, individuals diagnosed with at least two (one target, one control) animal subtype-specific phobias were randomly assigned (1:1:1) to receive one, three, or five sessions of multivoxel neuroreinforcement in which they were rewarded for implicit activation of a target animal representation. Amygdala response to phobic stimuli was assessed by study staff blind to target and control animal assignments. Pretreatment to posttreatment differences were analyzed with a two-way repeated-measures anova. RESULTS: A total of 23 participants (69.6% female) were randomized to receive one (n = 8), three (n = 7), or five (n = 7) sessions of multivoxel neuroreinforcement. Eighteen (n = 6 each group) participants were analyzed for our primary outcome. After neuroreinforcement, we observed an interaction indicating a significant decrease in amygdala response for the target phobia but not the control phobia. No adverse events or dropouts were reported as a result of the intervention. CONCLUSION: Results suggest that multivoxel neuroreinforcement can specifically reduce threat signatures in specific phobia. Consequently, this intervention may complement conventional psychotherapy approaches with a nondistressing experience for patients seeking treatment. This trial sets the stage for a larger randomized clinical trial to replicate these results and examine the effects on real-life exposure. CLINICAL TRIAL REGISTRATION: The now-closed trial was prospectively registered at ClinicalTrials.gov with ID NCT03655262.

20.
Chempluschem ; : e202400447, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229820

RESUMEN

The gel skeletal reinforcement (GSR) method was applied at the preparation stage of ß-zeolite to prepare a novel hierarchical catalyst. A solution of hexamethyldisiloxane (HMDS) and acetic anhydride, a GSR reagent, was added to the mixture of colloidal silica, sodium aluminate, tetraethylammonium hydroxide, sodium hydroxide and water, and successive aging and hydrothermal treatment gave microporous ß-zeolite surrounded by mesoporous silica like core-shell structure. Its properties were characterized by XRD, nitrogen adsorption and desorption, NH3-TPD, TEM, and TG-DTA measurements, and further characteristics of the catalysts produced were clarified by the catalytic cracking of n-dodecane. The hierarchical structure of microporous zeolite and mesoporous silica was shown from GSR-2.9HS-H-Beta to GSR-3.2HS-H-Beta, where the molar ratio of HMDS and silica source of ß-zeolite was 2.9~3.2:100. It was found that in the catalytic cracking of n-dodecane, the relative activity (the conversion per the amount of zeolite crystals) increased with the increase in mesopore volume and surface area. The result indicated that the introduction of mesopores was effective even in catalytic cracking of small molecule of n-dodecane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA