Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 850
Filtrar
1.
Front Genet ; 15: 1425456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364009

RESUMEN

Multi-omics data integration is a term that refers to the process of combining and analyzing data from different omic experimental sources, such as genomics, transcriptomics, methylation assays, and microRNA sequencing, among others. Such data integration approaches have the potential to provide a more comprehensive functional understanding of biological systems and has numerous applications in areas such as disease diagnosis, prognosis and therapy. However, quantitative integration of multi-omic data is a complex task that requires the use of highly specialized methods and approaches. Here, we discuss a number of data integration methods that have been developed with multi-omics data in view, including statistical methods, machine learning approaches, and network-based approaches. We also discuss the challenges and limitations of such methods and provide examples of their applications in the literature. Overall, this review aims to provide an overview of the current state of the field and highlight potential directions for future research.

2.
Proteins ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366918

RESUMEN

Protein cis-regulatory elements (CREs) are regions that modulate the activity of a protein through intramolecular interactions. Kinases, pivotal enzymes in numerous biological processes, often undergo regulatory control via inhibitory interactions in cis. This study delves into the mechanisms of cis regulation in kinases mediated by CREs, employing a combined structural and sequence analysis. To accomplish this, we curated an extensive dataset of kinases featuring annotated CREs, organized into homolog families through multiple sequence alignments. Key molecular attributes, including disorder and secondary structure content, active and ATP-binding sites, post-translational modifications, and disease-associated mutations, were systematically mapped onto all sequences. Additionally, we explored the potential for conformational changes between active and inactive states. Finally, we explored the presence of these kinases within membraneless organelles and elucidated their functional roles therein. CREs display a continuum of structures, ranging from short disordered stretches to fully folded domains. The adaptability demonstrated by CREs in achieving the common goal of kinase inhibition spans from direct autoinhibitory interaction with the active site within the kinase domain, to CREs binding to an alternative site, inducing allosteric regulation revealing distinct types of inhibitory mechanisms, which we exemplify by archetypical representative systems. While this study provides a systematic approach to comprehend kinase CREs, further experimental investigations are imperative to unravel the complexity within distinct kinase families. The insights gleaned from this research lay the foundation for future studies aiming to decipher the molecular basis of kinase dysregulation, and explore potential therapeutic interventions.

3.
Anim Reprod ; 21(4): e20240047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39371543

RESUMEN

PICK1 plays a crucial role in mammalian spermatogenesis. Here, we integrated single-molecule long-read and short-read sequencing to comprehensively examine PICK1 expression patterns in adult Baoshan pig (BS) testes. We identified the most important transcript ENSSSCT00000000120 of PICK1, obtaining its full-length coding sequence (CDS) spanning 1254 bp. Gene structure analysis located PICK1 on pig chromosome 5 with 14 exons. Protein structure analysis reflected that PICK1 consisted of 417 amino acids containing two conserved domains, PDZ and BAR_PICK1. Phylogenetic analysis underscored the evolutionary conservation and homology of PICK1 across different mammalian species. Evaluation of protein interaction network, KEGG, and GO pathways implied that interacted with 50 proteins, predominantly involved in glutamatergic synapses, amphetamine addiction, neuroactive ligand-receptor interactions, dopaminergic synapses, and synaptic vesicle recycling, and PICK1 exhibited significant correlation with DLG4 and TBC1D20. Functional annotation identified that PICK1 was involved in 9 GOs, including seven cellular components and two molecular functions. ceRNA network analysis suggested BS PICK1 was regulated by seven miRNA targets. Moreover, qPCR expression analysis across 15 tissues highlighted that PICK1 was highly expressed in the bulbourethral gland and testis. Subcellular localization analysis in ST (Swine Tesits) cells demonstrated that PICK1 significantly localized within the cytoplasm. Overall, our findings shed new light on PICK1's role in BS reproduction, providing a foundation for further functional studies of PICK1.

4.
Front Immunol ; 15: 1405855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372414

RESUMEN

Background: Despite the growing number of elderly kidney transplant (Ktx) recipients, few studies have examined the effects of immunosuppression on their lymphocyte profiles. Methods: We evaluated the early conversion from mycophenolate sodium (MPS) to everolimus (EVL) after rabbit antithymocyte globulin (rATG) 2 mg/kg induction in elderly kidney recipients. Three groups of KTx patients were compared: (a) Young (n=20, 36 ± 7 y) receiving standard immunosuppression (Group A1) (prednisone, tacrolimus, and MPS), (b) Elderly (n=35, 65 ± 3 y) receiving standard immunosuppression (Group B1), and (c) Elderly (n=16, 65 ± 3 y) with early (mean 30 d) conversion from MPS to EVL (Group B2). Naive, memory, and regulatory peripheral blood TCD4+ lymphocytes were quantified at 0, 30, and 365 d. Results: Results are reported as [mean(p25-p75)]. Young recipients had higher lymphocyte counts at baseline [2,100(1,630-2,400) vs. 1,310 (1,000-1,600)/mm3, p<0.0001] maintained higher counts within 365 d [1,850(1,590-2,120) vs. 1,130(460-1,325)/mm3, p=0.018 and vs. 1,410(805-1,895)/mm3, p=0.268]. Elderly recipients showed a decrease in lymphocytes within 30 d [1,310(1,000-1,600) vs. 910(700-1,198)/mm3, p=0.0012] with recovery within 365 d. The same pattern was observed in total lymphocytes and TCD4+ counts. Rabbit antithymocyte globulin induced a reduction in central memory T-cell percentages at 30 d in both young recipients [6.2(3.77-10.8) vs. 5.32(2.49-7.28)% of CD4+, p=0.036] and in elderly recipients [8.17(5.28-12.88) vs. 6.74(4.36-11)% of CD4+, p=0.05] on standard immunosuppression, returning to baseline at 365 d in elderly recipients but not in young recipients. Regulatory T CD39+ cells (Treg) percentages decreased at 30 d in elderly recipients [2.1(1.23-3.51) vs. 1.69(0.8-2.66)% of CD4+, p=0.0028] and in young recipients [1.29(0.45-1.85) vs. 0.84(0.18-1.82)% of CD4+, p=0.0038], returning to baseline at 365 d in elderly recipients [2.1(1.23-3.51) vs. 2.042(0.88-2.42)% of CD4+], but not in young recipients [1.29(0.45-1.85) vs. 0.86(0.7-1.34) % of CD4+]. The elderly everolimus conversion group did not show significant changes in cell profile over time or compared to elderly recipients with standard immunosuppression. Conclusion: Aging favored the maintenance of Treg during the late transplantation period despite ongoing immunosuppression. Lymphocyte depletion due to rATG was more prominent in elderly recipients and affected memory subsets with a temporary reduction in central memory T cells. However, conversion to everolimus did not impact Treg profile. Reducing the dose of rATG in elderly recipients seems necessary for the expected lymphocyte changes with EVL to occur. Clinical trial registration: nEverOld Trial, identifier NTC01631058.


Asunto(s)
Inmunosupresores , Trasplante de Riñón , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Edad , Suero Antilinfocítico/uso terapéutico , Everolimus , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Terapia de Inmunosupresión/métodos , Inmunosupresores/uso terapéutico , Recuento de Linfocitos , Ácido Micofenólico/administración & dosificación , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/metabolismo , Tacrolimus/administración & dosificación , Tacrolimus/uso terapéutico , Receptores de Trasplantes
5.
Front Cell Infect Microbiol ; 14: 1425388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228892

RESUMEN

Background: The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods: Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results: The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion: The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Transcriptoma , Humanos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Biología Computacional , Pulmón/microbiología , Pulmón/patología , Boca/microbiología , Transducción de Señal , Microbioma Gastrointestinal/genética , Microbiota/genética , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Regulación Neoplásica de la Expresión Génica
6.
Front Immunol ; 15: 1444622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301030

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD) has been linked to immune responses to lung-associated self-antigens. Exposure to cigarette smoke (CS), the main cause of COPD, causes chronic lung inflammation, resulting in pulmonary matrix (ECM) damage. This tissue breakdown exposes collagen V (Col V), an antigen typically hidden from the immune system, which could trigger an autoimmune response. Col V autoimmunity has been linked to several lung diseases, and the induction of immune tolerance can mitigate some of these diseases. Evidence suggests that autoimmunity to Col V might also occur in COPD; thus, immunotolerance to Col V could be a novel therapeutic approach. Objective: The role of autoimmunity against collagen V in COPD development was investigated by analyzing the effects of Col V-induced tolerance on the inflammatory response and lung remodeling in a murine model of CS-induced COPD. Methods: Male C57BL/6 mice were divided into three groups: one exposed to CS for four weeks, one previously tolerated for Col V and exposed to CS for four weeks, and one kept in clean air for the same period. Then, we proceeded with lung functional and structural evaluation, assessing inflammatory cells in bronchoalveolar lavage fluid (BALF) and inflammatory markers in the lung parenchyma, inflammatory cytokines in lung and spleen homogenates, and T-cell phenotyping in the spleen. Results: CS exposure altered the structure of elastic and collagen fibers and increased the pro-inflammatory immune response, indicating the presence of COPD. Col V tolerance inhibited the onset of emphysema and prevented structural changes in lung ECM fibers by promoting an immunosuppressive microenvironment in the lung and inducing Treg cell differentiation. Conclusion: Induction of nasal tolerance to Col V can prevent inflammatory responses and lung remodeling in experimental COPD, suggesting that autoimmunity to Col V plays a role in COPD development.


Asunto(s)
Autoinmunidad , Colágeno Tipo V , Modelos Animales de Enfermedad , Tolerancia Inmunológica , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica , Animales , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Ratones , Colágeno Tipo V/inmunología , Masculino , Pulmón/inmunología , Pulmón/patología , Citocinas/metabolismo , Autoantígenos/inmunología
7.
Microorganisms ; 12(9)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39338584

RESUMEN

Leishmania parasites are transmitted to mammalian hosts through the bite of sandflies. These parasites can infect phagocytic cells (macrophages, dendritic cells, and neutrophils) and non-phagocytic cells (B cells and fibroblasts). In mice models, the disease development or resolution is linked to T cell responses involving inflammatory cytokines and the activation of macrophages with the M1/M2 phenotype. However, this mechanism does not apply to human infection where a more complex immunological response occurs. The understanding of interactions between immune cells during Leishmania infection in humans is still limited, as current infection models focus on individual cell types or late infection using controlled human infection models (CHIMs). This study investigated the early parasite infection in freshly isolated peripheral blood-derived (PBD) leukocytes over 24 h. Flow cytometer analysis is used in immunophenotyping to identify different subpopulations. The study found that among the L. aethiopicaGFP-associated leukocytes, most cells were neutrophils (55.87% ± 0.09 at 4 h) and monocytes (23.50% ± 0.05% at 24 h). B cells were 12.43% ± 0.10% at 24 h. Additionally, 10-20% of GFP+ leukocytes did not belong to the aforementioned cell types, and further investigation revealed their identity as CD4+ T cells. Data not only confirm previous findings of Leishmania infection with PBD leukocytes and association with B cells but also suggest that CD4+ T cells might influence the early-stage of infection.

8.
Foods ; 13(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39335850

RESUMEN

The production of healthy animal-derived food entails the effective control of foodborne pathogens and strategies to mitigate microbial threats during rearing. Antibiotics have been traditionally employed in animal farming to manage bacterial infections. However, the prohibition of antibiotic growth promoters in livestock farming has brought significant changes in animal production practices. Although antibiotics are now restricted to treating and preventing bacterial infections, their overuse has caused serious public health issues, including antibiotic resistance and the presence of antibiotic residues in food and wastewater. Therefore, sustainable animal production is crucial in reducing the spread of antibiotic-resistant bacteria. Annually, 40-50% of fruit and vegetable production is discarded worldwide. These discards present significant potential for extracting value-added ingredients, which can reduce costs, decrease waste, and enhance the food economy. This review highlights the negative impacts of antibiotic use in livestock farming and stresses the importance of analyzing the challenges and safety concerns of extracting value-added ingredients from fruit and vegetable co-products at an industrial scale. It also explores the current trends in reducing antibiotic use in livestock, with a focus on Latin American contexts. Finally, the suitability of using value-added ingredients derived from fruit and vegetable co-products for animal feeds is also discussed.

9.
Front Bioinform ; 4: 1419274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263245

RESUMEN

Rhizobium etli CFN42 proteome-transcriptome mixed data of exponential growth and nitrogen-fixing bacteroids, as well as Sinorhizobium meliloti 1021 transcriptome data of growth and nitrogen-fixing bacteroids, were integrated into transcriptional regulatory networks (TRNs). The one-step construction network consisted of a matrix-clustering analysis of matrices of the gene profile and all matrices of the transcription factors (TFs) of their genome. The networks were constructed with the prediction of regulatory network application of the RhizoBindingSites database (http://rhizobindingsites.ccg.unam.mx/). The deduced free-living Rhizobium etli network contained 1,146 genes, including 380 TFs and 12 sigma factors. In addition, the bacteroid R. etli CFN42 network contained 884 genes, where 364 were TFs, and 12 were sigma factors, whereas the deduced free-living Sinorhizobium meliloti 1021 network contained 643 genes, where 259 were TFs and seven were sigma factors, and the bacteroid Sinorhizobium meliloti 1021 network contained 357 genes, where 210 were TFs and six were sigma factors. The similarity of these deduced condition-dependent networks and the biological E. coli and B. subtilis independent condition networks segregates from the random Erdös-Rényi networks. Deduced networks showed a low average clustering coefficient. They were not scale-free, showing a gradually diminishing hierarchy of TFs in contrast to the hierarchy role of the sigma factor rpoD in the E. coli K12 network. For rhizobia networks, partitioning the genome in the chromosome, chromids, and plasmids, where essential genes are distributed, and the symbiotic ability that is mostly coded in plasmids, may alter the structure of these deduced condition-dependent networks. It provides potential TF gen-target relationship data for constructing regulons, which are the basic units of a TRN.

10.
Inflamm Res ; 73(10): 1601-1614, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39198294

RESUMEN

INTRODUCTION: Probiotics provide therapeutic benefits not only in the gut but also other mucosal organs, including the lungs. OBJECTIVE AND DESIGN: To evaluate the effects of the probiotic strain L. delbrueckii UFV-H2b20 oral administration in an experimental murine model of A. fumigatus pulmonary infection. BALB/c mice were associated with L. delbrueckii and infected with Aspergillus fumigatus and compared with non-associated group. METHODS: We investigated survival, respiratory mechanics, histopathology, colony forming units, cytokines in bronchoalveolar lavage, IgA in feces, efferocytosis, production of reactive oxygen species and the cell population in the mesenteric lymph nodes. RESULTS: L. delbrueckii induces tolerogenic dendritic cells, IL-10+macrophages and FoxP3+regulatory T cells in mesenteric lymph nodes and increased IgA levels in feces; after infection with A. fumigatus, increased survival and decreased fungal burden. There was decreased lung vascular permeability without changes in the leukocyte profile. There was enhanced neutrophilic response and increased macrophage efferocytosis. L. delbrueckii-treated mice displayed more of FoxP3+Treg cells, TGF-ß and IL-10 levels in lungs, and concomitant decreased IL-1ß, IL-17 A, and CXCL1 production. CONCLUSION: Uur results indicate that L. delbrueckii UFV H2b20 ingestion improves immune responses, controlling pulmonary A. fumigatus infection. L. delbrueckii seems to play a role in pathogenesis control by promoting immune regulation.


Asunto(s)
Aspergillus fumigatus , Citocinas , Lactobacillus delbrueckii , Pulmón , Ratones Endogámicos BALB C , Probióticos , Animales , Probióticos/administración & dosificación , Aspergillus fumigatus/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/microbiología , Administración Oral , Lactobacillus delbrueckii/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Ratones , Aspergilosis/inmunología , Aspergilosis/prevención & control , Linfocitos T Reguladores/inmunología , Inmunoglobulina A/inmunología , Femenino , Líquido del Lavado Bronquioalveolar/inmunología , Aspergilosis Pulmonar/inmunología , Heces/microbiología , Masculino
11.
Braz J Infect Dis ; 28(5): 103866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39163991

RESUMEN

Human Immunodeficiency Virus (HIV) infection is among the most challenging issues in the healthcare system, presenting significant financial and hygiene problems with a wide range of clinical manifestations. Despite the hopeful outcomes of Antiretroviral Therapies (ARTs), the current strategies for the treatment of patients with HIV infection have not shown clinical significance for all subjects, which is mainly due to the complexity of the disease. Therefore, the need for collaborative and interdisciplinary research focused on deciphering the multifaceted cellular, and molecular immunopathogenesis of HIV remains essential in the development of innovative and more efficacious therapeutic approaches. T-regulatory (Treg) cells function as suppressors of effector T-cell responses contributing to the inhibition of autoimmune disorders and the limitation of chronic inflammatory diseases. Notably, these cells can play substantial roles in regulating immune responses, immunopathogenesis, viral persistence and disease progression, and affect therapeutic responses in HIV patients. In this review, we aim elucidating the role of T-regulatory cells (Tregs) in the immunopathogenesis of HIV, including immunological fatigue and seroconversion. In particular, the focus of the current study is exploration of novel immunotherapeutic approaches to target HIV or related co-infections.


Asunto(s)
Infecciones por VIH , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico
12.
Environ Pollut ; 361: 124844, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39209054

RESUMEN

In late summer and early autumn 2022, an intense bloom of Protoceratium reticulatum-the main yessotoxin (YTX) producer along Chilean coasts and a major threat to artisanal fisheries, the aquaculture industry, and environmental health-was recorded in the Patagonian fjord system. The high YTX levels (>3.75 mg kg-1) resulted in the first ban of shellfish collection in Chile. At Puyuhuapi Fjord, a global "hotspot" of harmful algal bloom events, the cell density of P. reticulatum determined in integrated tube samples (0-10 m) at the end of April 2022 reached 407,000 cells L-1. At the same time, YTX levels well exceeded the regulatory limit by roughly 2.5-fold, with concentrations as high as 9.42 mg kg-1 measured in native populations of the blue mussel Mytilus chilensis. Five different YTX analogues, 45-OH-YTX, COOH-45-keto-YTX, COOH-45-OH-YTX, COOH-YTX, and 45,55-diOH-YTX, were also detected in relevant amounts. While the ban lasted close to 3 months, accumulation and detoxification processes were monitored over a 1-year period. This study assessed the implications of high levels of YTXs and their analogues on the local economy and ecosystem health, given the increase in P. reticulatum blooms predicted for NW Patagonia in the context of a changing climate.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Venenos de Moluscos , Oxocinas , Chile , Animales , Oxocinas/análisis , Floraciones de Algas Nocivas , Mytilus , Contaminantes Químicos del Agua/análisis , Toxinas Marinas/análisis
13.
Front Cell Neurosci ; 18: 1406832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206016

RESUMEN

Background: Major depression disorder (MDD) and anxiety are common mental disorders that significantly affect the quality of life of those who suffer from them, altering the person's normal functioning. From the biological perspective, the most classical hypothesis explaining their occurrence relies on neurotransmission and hippocampal excitability alterations. However, around 30% of MDD patients do not respond to medication targeting these processes. Over the last decade, the involvement of inflammatory responses in depression and anxiety pathogenesis has been strongly acknowledged, opening the possibility of tackling these disorders from an immunological point of view. In this context, regulatory T cells (Treg cells), which naturally maintain immune homeostasis by suppressing inflammation could be promising candidates for their therapeutic use in mental disorders. Methods: To test this hypothesis, C57BL/6 adult male mice were submitted to classical stress protocols to induce depressive and anxiety-like behavior; chronic restriction stress (CRS), and chronic unpredictable stress (CUS). Some of the stressed mice received a single adoptive transfer of Treg cells during stress protocols. Mouse behavior was analyzed through the open field (OFT) and forced swim test (FST). Blood and spleen samples were collected for T cell analysis using cell cytometry, while brains were collected to study changes in microglia by immunohistochemistry. Results: Mice submitted to CRS and CUS develop anxiety and depressive-like behavior, and only CRS mice exhibit lower frequencies of circulating Treg cells. Adoptive transfer of Treg cells decreased anxiety-like behavior in the OFT only in CRS model, but not depressive behavior in FST in neither of the two models. In CRS mice, Treg cells administration lowered the number of microglia in the hippocampus, which increased due this stress paradigm, and restored its arborization. However, in CUS mice, Treg cells administration increased microglia number with no significant effect on their arborization. Conclusion: Our results for effector CD4+ T cells in the spleen and microglia number and morphology in the hippocampus add new evidence in favor of the participation of inflammatory responses in the development of depressive and anxiety-like behavior and suggest that the modulation of key immune cells such as Treg cells, could have beneficial effects on these disorders.

14.
Adv Rheumatol ; 64(1): 59, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143637

RESUMEN

Advances in DNA sequencing technologies, especially next-generation sequencing (NGS), which is the basis for whole-exome sequencing (WES) and whole-genome sequencing (WGS), have profoundly transformed immune-mediated rheumatic disease diagnosis. Recently, substantial cost reductions have facilitated access to these diagnostic tools, expanded the capacity of molecular diagnostics and enabled the pursuit of precision medicine in rheumatology. Understanding the fundamental principles of genetics and diversity in genetic variant classification is a crucial milestone in rheumatology. However, despite the growing availability of DNA sequencing platforms, a significant number of autoinflammatory diseases (AIDs), neuromuscular disorders, hereditary collagen diseases, and monogenic bone diseases remain unsolved, and variants of uncertain significance (VUS) pose a formidable challenge to addressing these unmet needs in the coming decades. This article aims to provide an overview of the clinical indications and interpretation of comprehensive genetic testing in the medical field, addressing the related complexities and implications.


Asunto(s)
Pruebas Genéticas , Enfermedades Reumáticas , Humanos , Pruebas Genéticas/métodos , Enfermedades Reumáticas/genética , Enfermedades Reumáticas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Reumatología , Secuenciación del Exoma , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/diagnóstico , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/diagnóstico , Reumatólogos
15.
Curr Oncol ; 31(8): 4443-4454, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39195315

RESUMEN

INTRODUCTION: Advancements in oncology have revolutionized cancer treatment, with new drugs being approved at different rates worldwide. Our objective was to evaluate the approval of new oncological drugs for solid tumors by the Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the Brazilian Health Regulatory Agency (ANVISA) since 2008. METHODS: Data were collected from public and online databases by searching for the date of submission, the date of the procedure, the date of approval, clinical indication, and drug characteristics. The distribution was tested using the Shapiro-Wilk, test and comparisons were made using the Mann-Whitney U test; the data are reported using median days and interquartile range (IQR1-IQR3). RESULTS: In total, 104 new oncologic drugs for the treatment of solid tumors were approved by the three agencies: 98 by the FDA, 90 by the EMA, and 68 by ANVISA. The cancer types with the highest number of first indications were lung cancer (n = 24), breast cancer (n = 15), and melanoma (n = 15). Most approvals were for oral medications (n = 63) and tyrosine-kinase inhibitors or other small-molecule inhibitors (n = 54). Time to approval after submission was as follows: the FDA-224 days (167-285); the EMA-364 days (330-418); and ANVISA-403 days (276-636) (p < 0.00001 for the FDA to the EMA and the FDA to ANVISA). The difference between submission dates among the agencies was as follows: EMA-FDA: 24 days (0-85); ANVISA-FDA: 255 (114-632); and ANVISA-EMA: 260 (109-645). The difference in approval dates between the agencies was as follows: EMA-FDA: 185 days (59-319); ANVISA-FDA: 558 (278-957); and ANVISA-EMA: 435 days (158-918). CONCLUSIONS: New oncologic drugs are submitted to the FDA and EMA for approval on similar dates; however, the longer appraisal period by the EMA pushes the approval date for Europe to approximately 6 months later. The same steps at ANVISA delay the approval by 1.5 years. Such procedures cause a significant difference in available medications between these regions.


Asunto(s)
Antineoplásicos , Aprobación de Drogas , Neoplasias , United States Food and Drug Administration , Humanos , Brasil , Estados Unidos , Europa (Continente) , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico
16.
Heliyon ; 10(12): e33060, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994081

RESUMEN

Growth hormone (GH) is a pituitary protein that exerts pleiotropic roles in vertebrates. The mechanisms regulating GH synthesis and secretion are finely controlled by hypothalamic neuropeptides and other factors. These processes have been considerably studied in mammals but are still poorly understood in other groups. To better understand the pituitary GH regulation during vertebrate phylogeny, we compared the effects of incubating several peptides on cultures of ex-vivo pituitary fragments obtained from representative specimens of reptiles (iguana), birds (chicken) and mammals (rat). The peptides used were: growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), pituitary adenylate cyclase-activating polypeptide (PACAP), ghrelin, gonadotropin-releasing hormone (GnRH), and somatostatin (SST). In rat pituitary cultures, GH secretion was stimulated by GHRH and TRH, while gh mRNA expression was increased by GHRH and PACAP. In the case of chicken pituitaries, GH release was promoted by GHRH, ghrelin, PACAP, and GnRH, although the latter two had a dual effect since at a shorter incubation time they decreased GH secretion; in turn, gh mRNA expression was significantly stimulated by TRH, PACAP, and GnRH. The most intense effects were observed in iguana pituitary cultures, where GH secretion was significantly augmented by GHRH, PACAP, TRH, ghrelin, and GnRH; while gh mRNA expression was stimulated by GHRH, TRH, and PACAP, but inhibited by ghrelin and SST. Also, in the three species, SST was able to block the GHRH-stimulated GH release. Furthermore, it was found that the expression of Pou1f1 mRNA was increased with greater potency by GHRH and PACAP in the iguana, than in chicken or rat pituitary cultures. Additionally, in-silico analysis of the gh gene promoter structures in the three species showed that the reptilian promoter has more Pit-1 consensus binding sites than their avian and mammalian counterparts. Taken together, results demonstrate that pituitary peptide-mediated GH regulatory mechanisms are differentially controlled along vertebrate evolution.

17.
Environ Sci Pollut Res Int ; 31(35): 48758-48772, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039370

RESUMEN

Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely found as cereal contaminants, and their co-consumption is associated with liver cancer. Both are immunotoxic, but their interactions have been little studied. This work was aimed to evaluate in mouse spleen mononuclear cells (SMC) the effects of the exposure to AFB1 (5-50 µM), FB1 (25-250 µM), and AFB1-FB1 mixtures (MIX) on the in vitro differentiation of regulatory T cells (Treg and Tr1-like) and Th17 cells, as well as elucidate the contribution of aryl hydrocarbon receptor (Ahr) in such effects. AFB1 and mainly MIX induced cytotoxicity in activated CD4 cells via Ahr signaling. AFB1 (5 µM) increased the Treg cell differentiation, but its combination with FB1 (25 µM) also reduced Th17 cell expansion by Ahr-dependent mechanisms. Therefore, this mixture could enhance the Treg/Th17 cell ratio and favor immunosuppression and escape from tumor immunosurveillance to a greater extent than individual mycotoxins. Whereas, AFB1-FB1 mixtures at medium-high doses inhibited the Tr1-like cell expansion induced by the individual mycotoxins and affected Treg and Th17 cell differentiation in Ahr-independent and dependent manners, respectively, which could alter anti-inflammatory and Th17 immune responses. Moreover, individual FB1 altered regulatory T and Th17 cell development independently of Ahr. In conclusion, AFB1 and FB1 interact by modifying Ahr signaling, which is involved in the immunotoxicity as well as in the alteration of the differentiation of Treg, Tr1-like, and Th17 cells induced by AFB1-FB1 mixtures. Therefore, Ahr is implicated in the regulation of the anti- and pro-inflammatory responses caused by the combination of AFB1 and FB1.


Asunto(s)
Aflatoxina B1 , Diferenciación Celular , Fumonisinas , Receptores de Hidrocarburo de Aril , Linfocitos T Reguladores , Células Th17 , Receptores de Hidrocarburo de Aril/metabolismo , Aflatoxina B1/toxicidad , Animales , Células Th17/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Fumonisinas/toxicidad , Ratones , Diferenciación Celular/efectos de los fármacos
18.
Cell Mol Life Sci ; 81(1): 309, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060446

RESUMEN

The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPß, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.


Asunto(s)
Cromatina , Relojes Circadianos , Ácidos Grasos , Hígado , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad , Animales , Cromatina/metabolismo , Cromatina/genética , Hígado/metabolismo , Ratones , Relojes Circadianos/genética , Obesidad/metabolismo , Obesidad/genética , Ácidos Grasos/metabolismo , Masculino , Dieta Alta en Grasa/efectos adversos , Ensamble y Desensamble de Cromatina , Ritmo Circadiano/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Metabolismo de los Lípidos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
19.
BMC Microbiol ; 24(1): 279, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061004

RESUMEN

BACKGROUND: Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS: Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS: Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Hierro , Klebsiella pneumoniae , Lipopolisacáridos , Regiones Promotoras Genéticas , Proteínas Represoras , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Lipopolisacáridos/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Hierro/metabolismo , Sitios de Unión , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo
20.
Integr Environ Assess Manag ; 20(6): 1787-1792, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38860613

RESUMEN

Since 2019, the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) has actively developed pesticide environmental risk assessment (ERA) frameworks adapted to Brazil's specific ecological contexts. This endeavor, supported by funding from the Brazilian Ministry of Justice and in partnership with academic institutions, has led to a concerted effort to establish ERA protocols for various taxa, including birds and mammals, soil organisms, aquatic organisms, and reptiles and amphibians. The outcomes of this initiative were conveyed in two workshops held in February and November 2023, during which the agency communicated its findings to the technical-regulatory community. This article represents one of two articles that provide more detailed insights into the ERA propositions for all taxa. In this article, we summarize the proposals for aquatic organisms presented and discussed during the workshops, which can be used as an informational source by the technical-regulatory community. Integr Environ Assess Manag 2024;20:1787-1792. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Organismos Acuáticos , Monitoreo del Ambiente , Medición de Riesgo , Brasil , Monitoreo del Ambiente/métodos , Animales , Plaguicidas/toxicidad , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Conservación de los Recursos Naturales/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA