Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Stat Assoc ; 119(545): 744-756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706705

RESUMEN

This paper studies the projection test for high-dimensional mean vectors via optimal projection. The idea of projection test is to project high-dimensional data onto a space of low dimension such that traditional methods can be applied. We first propose a new estimation for the optimal projection direction by solving a constrained and regularized quadratic programming. Then two tests are constructed using the estimated optimal projection direction. The first one is based on a data-splitting procedure, which achieves an exact t-test under normality assumption. To mitigate the power loss due to data-splitting, we further propose an online framework, which iteratively updates the estimation of projection direction when new observations arrive. We show that this online-style projection test asymptotically converges to the standard normal distribution. Various simulation studies as well as a real data example show that the proposed online-style projection test retains the type I error rate well and is more powerful than other existing tests.

2.
Sci Rep ; 14(1): 4070, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374350

RESUMEN

In order to simultaneously maintain the ship magnetic field modeling accuracy, reduce the number of coefficient matrix conditions and the model computational complexity, an improved composite model is designed by introducing the magnetic dipole array model with a single-axis magnetic moment on the basis of the hybrid ellipsoid and magnetic dipole array model. First, the improved composite model of the ship's magnetic field is established based on the magnetic dipole array model with 3-axis magnetic moment, the magnetic dipole array model with only x-axis magnetic moment, and the ellipsoid model. Secondly, the set of equations for calculating the magnetic moments of the composite model is established, and for the problem of solving the pathological set of equations, the least-squares estimation, stepwise regression method, Tikhonov, and truncated singular value decomposition regularization methods are introduced in terms of the magnetic field, and generalized cross-validation is used to solve the optimal regularization parameters. Finally, a ship model test is designed to compare and analyze the effectiveness of the composite and hybrid models in four aspects: the number of coefficient matrix conditions of the model equation set, the relative error of magnetic field fitting, the relative error of magnetic field extrapolation, and the computational time complexity. The modeling results based on the ship model test data show that the composite model can be used for modeling the magnetic field of ships, and compared with the hybrid model, it reduces the number of coefficient matrix conditions and improves the computational efficiency on the basis of retaining a higher modeling accuracy, and it can be effectively applied in related scientific research and engineering.

3.
Biosystems ; 237: 105163, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401640

RESUMEN

In this paper, we explore the challenges associated with biomarker identification for diagnosis purpose in biomedical experiments, and propose a novel approach to handle the above challenging scenario via the generalization of the Dantzig selector. To improve the efficiency of the regularization method, we introduce a transformation from an inherent nonlinear programming due to its nonlinear link function into a linear programming framework under a reasonable assumption on the logistic probability range. We illustrate the use of our method on an experiment with binary response, showing superior performance on biomarker identification studies when compared to their conventional analysis. Our proposed method does not merely serve as a variable/biomarker selection tool, its ranking of variable importance provides valuable reference information for practitioners to reach informed decisions regarding the prioritization of factors for further investigations.


Asunto(s)
Biomarcadores , Probabilidad
4.
Sensors (Basel) ; 21(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800810

RESUMEN

In recent years, deep neural networks have shown significant progress in computer vision due to their large generalization capacity; however, the overfitting problem ubiquitously threatens the learning process of these highly nonlinear architectures. Dropout is a recent solution to mitigate overfitting that has witnessed significant success in various classification applications. Recently, many efforts have been made to improve the Standard dropout using an unsupervised merit-based semantic selection of neurons in the latent space. However, these studies do not consider the task-relevant information quality and quantity and the diversity of the latent kernels. To solve the challenge of dropping less informative neurons in deep learning, we propose an efficient end-to-end dropout algorithm that selects the most informative neurons with the highest correlation with the target output considering the sparsity in its selection procedure. First, to promote activation diversity, we devise an approach to select the most diverse set of neurons by making use of determinantal point process (DPP) sampling. Furthermore, to incorporate task specificity into deep latent features, a mutual information (MI)-based merit function is developed. Leveraging the proposed MI with DPP sampling, we introduce the novel DPPMI dropout that adaptively adjusts the retention rate of neurons based on their contribution to the neural network task. Empirical studies on real-world classification benchmarks including, MNIST, SVHN, CIFAR10, CIFAR100, demonstrate the superiority of our proposed method over recent state-of-the-art dropout algorithms in the literature.

5.
Entropy (Basel) ; 22(7)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33286499

RESUMEN

Information theory concepts are leveraged with the goal of better understanding and improving Deep Neural Networks (DNNs). The information plane of neural networks describes the behavior during training of the mutual information at various depths between input/output and hidden-layer variables. Previous analysis revealed that most of the training epochs are spent on compressing the input, in some networks where finiteness of the mutual information can be established. However, the estimation of mutual information is nontrivial for high-dimensional continuous random variables. Therefore, the computation of the mutual information for DNNs and its visualization on the information plane mostly focused on low-complexity fully connected networks. In fact, even the existence of the compression phase in complex DNNs has been questioned and viewed as an open problem. In this paper, we present the convergence of mutual information on the information plane for a high-dimensional VGG-16 Convolutional Neural Network (CNN) by resorting to Mutual Information Neural Estimation (MINE), thus confirming and extending the results obtained with low-dimensional fully connected networks. Furthermore, we demonstrate the benefits of regularizing a network, especially for a large number of training epochs, by adopting mutual information estimates as additional terms in the loss function characteristic of the network. Experimental results show that the regularization stabilizes the test accuracy and significantly reduces its variance.

6.
Sci Prog ; 103(3): 36850420931283, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32609575

RESUMEN

Dynamic forces are very important boundary conditions in practical engineering applications, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. Moreover, there are many applications in which we have found it very difficult to directly obtain the expected dynamic load which acts on a structure. Some traditional indirect inverse analysis techniques are developed for load identification by measured responses. These inverse problems about load identification mentioned above are complex and inherently ill-posed, while regularization methods can deal with this kind of problem. However, most of regularization methods are only limited to solve the pure mathematical numerical examples without application to practical engineering problems, and they should be improved to exclude jamming of noises in engineering. In order to solve these problems, a new regularization method is presented in this article to investigate the minimum of this minimization problem, and applied to reconstructing multi-source dynamic loads on the frame structure of hydrogenerator by its steady-state responses. Numerical simulations of the inverse analysis show that the proposed method is more effective and accurate than the famous Tikhonov regularization method. The proposed regularization method in this article is powerful in solving the dyanmic load identification problems.


Asunto(s)
Algoritmos , Simulación por Computador
7.
J Comput Neurosci ; 48(3): 281-297, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32627092

RESUMEN

The derivation by Alan Hodgkin and Andrew Huxley of their famous neuronal conductance model relied on experimental data gathered using the squid giant axon. However, the experimental determination of conductances of neurons is difficult, in particular under the presence of spatial and temporal heterogeneities, and it is also reasonable to expect variations between species or even between different types of neurons of the same species.We tackle the inverse problem of determining, given voltage data, conductances with non-uniform distribution in the simpler setting of a passive cable equation, both in a single or branched neurons. To do so, we consider the minimal error iteration, a computational technique used to solve inverse problems. We provide several numerical results showing that the method is able to provide reasonable approximations for the conductances, given enough information on the voltages, even for noisy data.


Asunto(s)
Axones/fisiología , Conducción Nerviosa/fisiología , Neuronas/fisiología , Animales , Humanos , Potenciales de la Membrana/fisiología , Modelos Neurológicos
8.
Infect Dis Model ; 2(2): 268-275, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-29928741

RESUMEN

Public health officials are increasingly recognizing the need to develop disease-forecasting systems to respond to epidemic and pandemic outbreaks. For instance, simple epidemic models relying on a small number of parameters can play an important role in characterizing epidemic growth and generating short-term epidemic forecasts. In the absence of reliable information about transmission mechanisms of emerging infectious diseases, phenomenological models are useful to characterize epidemic growth patterns without the need to explicitly model transmission mechanisms and the natural history of the disease. In this article, our goal is to discuss and illustrate the role of regularization methods for estimating parameters and generating disease forecasts using the generalized Richards model in the context of the 2014-15 Ebola epidemic in West Africa.

9.
Methods ; 67(3): 294-303, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24650566

RESUMEN

Inferring gene regulatory networks from gene expression data at whole genome level is still an arduous challenge, especially in higher organisms where the number of genes is large but the number of experimental samples is small. It is reported that the accuracy of current methods at genome scale significantly drops from Escherichia coli to Saccharomyces cerevisiae due to the increase in number of genes. This limits the applicability of current methods to more complex genomes, like human and mouse. Least absolute shrinkage and selection operator (LASSO) is widely used for gene regulatory network inference from gene expression profiles. However, the accuracy of LASSO on large genomes is not satisfactory. In this study, we apply two extended models of LASSO, L0 and L1/2 regularization models to infer gene regulatory network from both high-throughput gene expression data and transcription factor binding data in mouse embryonic stem cells (mESCs). We find that both the L0 and L1/2 regularization models significantly outperform LASSO in network inference. Incorporating interactions between transcription factors and their targets remarkably improved the prediction accuracy. Current study demonstrates the efficiency and applicability of these two models for gene regulatory network inference from integrative omics data in large genomes. The applications of the two models will facilitate biologists to study the gene regulation of higher model organisms in a genome-wide scale.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Algoritmos , Inmunoprecipitación de Cromatina/métodos , Genoma , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA