Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39298291

RESUMEN

SiOx electrodes are promising for high-energy-density lithium-ion batteries (LIBs) due to their ability to mitigate volume expansion-induced degradation. Here, we investigate the surface dynamics of SiOx thin-film electrodes cycled in different carbonate-based electrolytes using a combination of ex situ X-ray photoelectron spectroscopy (XPS) and operando synchrotron X-ray reflectivity analyses. The thin-film geometry allows us to probe the depth-dependent chemical composition and electron density from surface to current collector through the solid electrolyte interphase (SEI), the active material, and the thickness evolution during cycling. Results reveal that SiOx lithiation initiates below 0.4 V vs Li+/Li and indicate a close relationship between SEI formation and SiOx electrode lithiation, likely due to the high resistivity of SiOx. We find similar chemical compositions for the SEI in FEC-containing and FEC-free electrolytes but observe a reduced thickness in the former case. In both cases, the SEI thickness decreases during delithiation due to the removal or dissolution of some carbonate species. These findings give insights into the (de)lithiation of SiOx, in particular, during the formation stage, and the effect of the presence of FEC in the electrolyte on the evolution of the SEI during cycling.

2.
Materials (Basel) ; 17(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274783

RESUMEN

The processing of pure copper (Cu) has been a challenge for laser-based additive manufacturing for many years since copper powders have a high reflectivity of up to 83% of electromagnetic radiation at a wavelength of 1070 nm. In this study, Cu particles were coated with sub-micrometer tungsten (W) particles to increase the laser beam absorptivity. The coated powders were processed by powder bed fusion-laser beam for metals (PBF-LB/M) with a conventional laser system of <300 watts laser power and a wavelength of 1070 nm. Two different powder manufacturing routes were developed. The first manufacturing route was gas atomization combined with a milling process by a planetary mill. The second manufacturing method was gas atomization with particle co-injection, where a separate W particle jet was sprayed into the atomized Cu jet. As part of the investigations, an extensive characterization of powder and additively manufactured test specimens was carried out. The specimens of Cu/W powders manufactured by the milling process have shown superior results. The laser absorptivity of the Cu/W powder was increased from 22.5% (pure Cu powder) to up to 71.6% for powders with 3 vol% W. In addition, a relative density of test specimens up to 98.2% (optically) and 95.6% (Archimedes) was reached. Furthermore, thermal conductivity was measured by laser flash analysis (LFA) and thermo-optical measurement (TOM). By using eddy current measurement, the electrical conductivity was analyzed. In comparison to the Cu reference, a thermal conductivity of 88.9% and an electrical conductivity of 85.8% were determined. Moreover, the Vickers hardness was measured. The effect of porosity on conductivity properties and hardness was investigated and showed a linear correlation. Finally, a demonstrator was built in which a wall thickness of down to 200 µm was achieved. This demonstrates that the Cu/W composite can be used for heat exchangers, heat sinks, and coils.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125069, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241400

RESUMEN

The detection of ethanol-water solution concentration plays an important role in industries, medical care, food and other aspects, which has attracted much attention. In this paper, a 632.8 nm laser combined with the oblique-incidence reflectivity difference (OIRD) method was used to obtain a signal linearly related to the solution concentration and containing the information of the dielectric constant of the solution. Combined with a variety of deep learning algorithms, ethanol-water solutions with a volume concentration of 0-95 % are detected. Among them, the prediction accuracy of the MLP, CNN, LSTM, CNN + BiLSTM + Attention models were 93.65 %, 96.54 %, 97.12 %, 99.23 %, respectively. The experimental results indicate that the OIRD method can achieve rapid, non-destructive, accurate and reliable detection of ethanol-water solutions.

4.
Nanomaterials (Basel) ; 14(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39269101

RESUMEN

Exploring the phonon characteristics of novel group-IV binary XC (X = Si, Ge, Sn) carbides and their polymorphs has recently gained considerable scientific/technological interest as promising alternatives to Si for high-temperature, high-power, optoelectronic, gas-sensing, and photovoltaic applications. Historically, the effects of phonons on materials were considered to be a hindrance. However, modern research has confirmed that the coupling of phonons in solids initiates excitations, causing several impacts on their thermal, dielectric, and electronic properties. These studies have motivated many scientists to design low-dimensional heterostructures and investigate their lattice dynamical properties. Proper simulation/characterization of phonons in XC materials and ultrathin epilayers has been challenging. Achieving the high crystalline quality of heteroepitaxial multilayer films on different substrates with flat surfaces, intra-wafer, and wafer-to-wafer uniformity is not only inspiring but crucial for their use as functional components to boost the performance of different nano-optoelectronic devices. Despite many efforts in growing strained zinc-blende (zb) GeC/Si (001) epifilms, no IR measurements exist to monitor the effects of surface roughness on spectral interference fringes. Here, we emphasize the importance of infrared reflectivity Rω and transmission Tω spectroscopy at near normal θi = 0 and oblique θi ≠ 0 incidence (Berreman effect) for comprehending the phonon characteristics of both undoped and doped GeC/Si (001) epilayers. Methodical simulations of Rω and Tω revealing atypical fringe contrasts in ultrathin GeC/Si are linked to the conducting transition layer and/or surface roughness. This research provided strong perspectives that the Berreman effect can complement Raman scattering spectroscopy for allowing the identification of longitudinal optical ωLO phonons, transverse optical ωTO phonons, and LO-phonon-plasmon coupled ωLPP+ modes, respectively.

5.
Nano Lett ; 24(35): 11124-11131, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39171793

RESUMEN

Two-dimensional metal halide perovskites are highly versatile for light-driven applications due to their exceptional variety in material composition, which can be exploited for the tunability of mechanical and optoelectronic properties. The band-edge emission is defined by the structure and composition of both organic and inorganic layers, and electron-phonon coupling plays a crucial role in the recombination dynamics. However, the nature of the electron-phonon coupling and what kind of phonons are involved are still under debate. Here we investigate the emission, reflectance, and phonon response from single two-dimensional lead iodide microcrystals with angle-resolved polarized spectroscopy. We find an intricate dependence of the emission polarization with the vibrational directionality in the materials, which reveals that several bands of low-frequency phonons with nonorthogonal directionality contribute to the band-edge emission. Such complex electron-phonon coupling requires adequate models to predict the thermal broadening of the emission and provides opportunities to design polarization properties.

6.
Adv Mater ; : e2408060, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087402

RESUMEN

Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them ß-guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually high refractive indices (RIs) is consistent with their light manipulation function. Here, the physical, structural, and optical principles of how light interacts with the polarizable free-electron-rich environment of these quasiaromatic molecules are addressed. How the organization of these molecules into crystalline arrays introduces optical anisotropy and finally how organisms control crystal morphology and superstructural organization to optimize functions in light reflection and scattering are also discussed. Many open questions remain in this fascinating field, some of which arise out of this in-depth analysis of the interaction of light with crystal arrays. More types of organic crystals will probably be discovered, as well as other organisms that use these crystals to manipulate light. The insights gained from biological systems can also be harnessed for improving synthetic light-manipulating materials.

7.
Biochem Biophys Res Commun ; 737: 150533, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39142138

RESUMEN

Enzyme-mediated lipid oxidation is an important regulatory event in cell signaling, with oxidized lipids being potent signaling molecules that can illicit dramatic changes in cell behavior. For example, peroxidation of an arachidonoyl poly-unsaturated fatty acid by the human enzyme 15-lipoxygenase-2 (15-LOX-2) has been associated with formation of atherosclerotic plaques. Previous work on synthetically oxidized membranes has shown that oxidized lipid tails will change their conformation to facilitate interactions between the peroxide group and the lipid headgroups. However, this phenomenon has not been directly observed for a lipid membrane that has undergone enzyme-catalyzed oxidation. In this study, we report on the structure of a model lipid membrane before and after oxidation by 15-LOX-2. A model lipid membrane monolayer at the air-liquid interface was constructed from 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC) in a Langmuir trough, and X-ray reflectivity measurements were conducted to determine the electron density profile of the system. Exposure to 15-LOX-2 caused a dramatic change in the SAPC structure, namely a blurred distinction between the lipid tail/head layers and shortening of the average lipid tail length by ∼3 Å. The electron density profile of the oxidized SAPC monolayer is similar to that of a synthetically oxidized substrate mimic. Overall, this reported observation of an enzymatically-oxidized membrane structure in situ is helping to bridge a gap in the literature between structural studies on synthetically oxidized membranes and cellular studies aiming to understand physiological responses.

8.
Sci Rep ; 14(1): 20059, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209946

RESUMEN

The development of ultra-low near-infrared reflectivity coatings with outstanding engineering properties remains a challenge in laser stealth materials research. Herein, we reported a laser stealth coating with outstanding mechanical properties, super-hydrophobicity, and an ultra-low near-infrared reflectivity for 1.06 µm wavelength. The effects of the mass ratio of graphene to nano-SiO2, the proportion of total filler, the addition of KH560, the mass ratio of Polydimethylsiloxane (PDMS) to acrylic-modified polyurethane (APU), and the addition of dioctyl phthalate (DOP) on the coating properties were thoroughly discussed. The coating can achieve a low reflectivity of 9.3% at 1.06 µm and a high water contact angle of 152° at a mass ratio of 7:3 for PDMS to APU and 6:4 for graphene to nano-SiO2 with a total filler amount of 40 wt%. KH560 can play a bridging role between the blended resin matrix and nano-SiO2, which can significantly improve the impact strength of the coating. The DOP, which contains a polar ester group and a non-polar carbon chain structure, can be inserted between the molecular chains of the resin to weaken the intermolecular force of the resin, so that the flexibility of the coating can be significantly improved. Adding KH560 at 4 wt% and DOP at 1 wt%, resulted in a coating with ultra-low near-infrared reflectivity of 1.06 µm (9.3%), super-hydrophobic properties, outstanding adhesion strength (grade 2), flexibility (2 mm), and impact strength (50 kg cm). The above super-hydrophobic ultra-low near-infrared reflectivity coating has significant potential for use in the field of laser stealth equipment, and it can serve as a useful reference for optimizing the mechanical properties of super-hydrophobic functional coatings.

9.
Rep Prog Phys ; 87(10)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39168142

RESUMEN

We report ultrafast reflectivity measurements of the dynamics of the order parameter of the charge density wave (CDW) in TbTe3under anisotropic strain. We observe an increase in the frequency of the amplitude mode with increasing tensile strain along thea-axis (which drives the lattice intoa > c, withaandcthe lattice constants), and similar behavior for tensile strain alongc(c > a). This suggests that both strains stabilize the corresponding CDW order and further support the near equivalence of the CDW phases oriented ina- andc-axis, in spite of the orthorhombic space group. The results were analyzed within the time-dependent Ginzburg-Landau framework, which agrees well with the reflectivity dynamics. Our study presents an ultrafast approach to assess the stability of phases and order parameter dynamics in strained systems.

10.
Cureus ; 16(6): e63512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39081433

RESUMEN

Introduction In the early postoperative period following trabeculectomy, monitoring the journey of bleb formation is crucial for assessing surgical success. Anterior-segment optical coherence tomography (AS-OCT) emerges as a powerful tool in this pursuit, offering high-resolution imaging of bleb morphology and dynamics. This study aims to evaluate the internal structure of blebs through their maturation phases using AS-OCT. Methods Fifty-five eyes undergoing trabeculectomy were enrolled in a prospective observational study. Serial AS-OCT examinations were done on day 1, week 1, week 3, and week 6 postoperatively; bleb parameters were calculated and correlated with intraocular pressure (IOP). Results IOP control was seen in 45 eyes six months of post-trabeculectomy. Multiform bleb wall reflectivity (BWR) statistically correlates with the success of trabeculectomy. Blebs were successful if BWR showed no change from day 1 to week 6. BWR remained the same on all follow-ups if week 1 bleb wall thickness (BWT) was less than 129.5 microns with 82.6% sensitivity and 83.3% specificity. The cumulative hazard of change in BWR is estimated to be approximately 5.6%, 15.7%, and 17.9% at week 1, week 3, and week 6 follow-ups, respectively. Conclusions Successful blebs showed consistent BWR from day 1 to week 6 of follow-up. Serial AS-OCT examination for changes in BWR in early stages can be done to predict the fate of bleb. The maximum change in BWR occurs between the week 1 and week 3 follow-up periods requiring close follow-up.

11.
J Phys Condens Matter ; 36(42)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38986476

RESUMEN

The K0.5Na0.5NbO3(KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric properties of room temperature phase of KNN by combiningab-initioDFT based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtainab-initiopolarized Raman spectra, Infrared reflectivity, Born-effective charge tensors, oscillator strengths etc. The KNN ceramic samples are prepared using conventional solid-state method and Raman and UV-Vis diffuse reflectance spectra are obtained. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in range ∼840-870 cm-1reported in the experimental studies is longitudinal optical withA1symmetry. The Raman mode intensities are calculated for different light polarization set-ups that suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated and optical absorption spectrum is obtained. Further, the performances of DFT semi-local, meta-GGA and hybrid exchange-correlations functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellent agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.

12.
Philos Ethics Humanit Med ; 19(1): 10, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014434

RESUMEN

This paper draws on qualitative research using focus groups involving 38 general practitioners (GPs). It explores their attitudes and feelings about (over-)medicalisation. Our main findings were that GPs had a complex representation of (over-)medicalisation, composed of many professional, social, technological, economic and relational issues. This representation led GPs to feel uncomfortable. They felt pressure from all sides, which led them to question their social roles and responsibilities. We identified four main GP-driven proposals to deal with (over-)medicalisation: (1) focusing on the communication in doctor-patient relationships; (2) grounding practices in evidence-based medicine; (3) relying on clinical skills, experience and intuition; and (4) promoting training, leadership bodies and social movements. Drawing on these proposals, we identify and discuss five paradigms that underpin GPs' attitudes toward (over-)medicalisation: underlying social factors, preventing medicalisation, managing uncertainties, sharing medical decision-making and thinking about care as a rationale. We suggest that these paradigms constitute a defensive posture against GPs' uncomfortable feelings. All five defensive paradigms were identified in our focus groups, echoing contemporary political debates on public health. This non-exhaustive framework forms the outline of what we call ordinary defensive medicine. GPs' uncomfortable feelings are the origin of their defensive solutions and the manifestation of their vulnerability. This professional vulnerability can be shared with the patient's vulnerability. In our view, this creates an opportunity to rediscover patient-doctor relationships and examine patients' and doctors' vulnerabilities together."There are many cases in which-though the signs of a confusion of tongues between the patient and his doctor are painfully present-there is apparently no open controversy. Some of these cases demonstrate the working of two other, often interlinked, factors. One is the patient's increasing anxiety and despair, resulting in more and more fervently clamouring demands for help. Often the doctor's response is guilt feelings and despair that his most conscientious, most carefully devised examinations do not seem to throw real light on the patient's "illness", that his most erudite, most modern, most circumspect therapy does not bring real relief." (Balint M. The Doctor, His Patient and the Illness. New York: International Universities; 2005. [1957].)"Theories about care put an unprecedented emphasis on vulnerability-taking up that challenge to transform what really counts in today's hospitals implies letting colleagues inside previously closely guarded professional boundaries" (2, our translation).


Asunto(s)
Actitud del Personal de Salud , Medicina Defensiva , Grupos Focales , Médicos Generales , Humanos , Masculino , Femenino , Relaciones Médico-Paciente , Uso Excesivo de los Servicios de Salud/prevención & control , Investigación Cualitativa , Adulto , Persona de Mediana Edad
13.
Materials (Basel) ; 17(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998443

RESUMEN

Increased usage of selective laser sintering (SLS) for the production of end-use functional components has generated a requirement of developing new materials and process improvements to improve the applicability of this technique. This article discusses a novel process wherein carbon black was applied to the surface of TPU powder to reduce the laser reflectivity during the SLS process. The printing was carried out with a preheating temperature of 75 °C, laser energy density of 0.028 J/mm2, incorporating a 0.4 wt % addition of carbon black to the TPU powder, and controlling the powder layer thickness at 125 µm. The mixed powder, after printing, shows a reflectivity of 13.81%, accompanied by the highest average density of 1.09 g/cm3, hardness of 78 A, tensile strength of 7.9 MPa, and elongation at break was 364.9%. Compared to commercial TPU powder, which lacks the carbon black coating, the reflectance decreased by 1.78%, mechanical properties improved by 33.9%, and there was a notable reduction in the porosity of the sintered product.

14.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998989

RESUMEN

Cholesteric liquid crystal microcapsules (CLCMs) are used to improve the stability of liquid crystals while ensuring their stimulus response performance and versatility, with representative applications such as sensing, anticounterfeiting, and smart fabrics. However, the reflectivity and angular anisotropy decrease because of the anchoring effect of the polymer shell matrix, and the influence of particle size on this has not been thoroughly studied. In this study, the effect of synthesis technology on microcapsule particle size was investigated using a complex coalescence method, and the effect of particle size on the reflectivity and angular anisotropy of CLCMs was investigated in detail. A particle size of approximately 66 µm with polyvinyl alcohol (PVA, 1:1) exhibited a relative reflectivity of 16.6% and a bandwidth of 20 nm, as well as a narrow particle size distribution of 22 µm. The thermosetting of microcapsules coated with PVA was adjusted and systematically investigated by controlling the mass ratio. The optimized mass ratio of microcapsules (66 µm) to PVA was 2:1, increasing the relative reflectivity from 16.6% (1:1) to 32.0% (2:1) because of both the higher CLCM content and the matching between the birefringence of the gelatin-arabic shell system and PVA. Furthermore, color based on Bragg reflections was observed in the CLCM-coated ortho-axis and blue-shifted off-axis, and this change was correlated with the CLCM particle size. Such materials are promising for anticounterfeiting and color-based applications with bright colors and angular anisotropy in reflection.

15.
Chem Asian J ; 19(17): e202400529, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38872616

RESUMEN

Hyperspectral imaging technology can record the spatial and spectral information of the targets and significantly enhance the levels of military reconnaissance and target detection. It has scientific importance to mimic "homochromatic and homospectral" camouflage materials that have hyperspectral similarity with the green vegetation, one of the most common natural backgrounds. It is a big challenge to exquisitely simulate the spectral of green vegetation in visible and near-infrared windows because of the slight differences between the artificial green dyes and vegetation, the instability of chlorophylls, and the easy loss of hydroxide bands due to the loss of water from the camouflage materials. Herein, a novel kind of biomimetic material of green vegetation was designed through the incorporation of chlorophylls into the crystal lattices of single-crystalline anhydrous guanine microplates for the first time. The synthesized chlorophylls-doped anhydrous guanine crystals exhibit high reflectance intensity and depolarization effect, thus can be applied as biomimetic camouflage materials that mimic green vegetation with high reflectivity and low polarization in the visible and near-infrared regions. The factors influencing the formation of dye-doped organic crystals under mild conditions were thoroughly investigated and the characterizations using electron microscopies and fluorescence confocal laser scanning microscopy clearly confirm the occlusion of chlorophylls into the crystal lattices of guanine crystals. The thermal stability experiments clearly indicate that the chlorophylls-doped guanine crystals possess long-term stability at high temperature. This study provides a new strategy for the synthesis of multifunctional materials comprised of organic crystals.

16.
Nanomaterials (Basel) ; 14(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38869570

RESUMEN

This article discusses a method for forming black silicon using plasma etching at a sample temperature range from -20 °C to +20 °C in a mixture of oxygen and sulfur hexafluoride. The surface morphology of the resulting structures, the autocorrelation function of surface features, and reflectivity were studied depending on the process parameters-the composition of the plasma mixture, temperature and other discharge parameters (radical concentrations). The relationship between these parameters and the concentrations of oxygen and fluorine radicals in plasma is shown. A novel approach has been studied to reduce the reflectance using conformal bilayer dielectric coatings deposited by atomic layer deposition. The reflectivity of the resulting black silicon was studied in a wide spectral range from 400 to 900 nm. As a result of the research, technologies for creating black silicon on silicon wafers with a diameter of 200 mm have been proposed, and the structure formation process takes no more than 5 min. The resulting structures are an example of the self-formation of nanostructures due to anisotropic etching in a gas discharge plasma. This material has high mechanical, chemical and thermal stability and can be used as an antireflective coating, in structures requiring a developed surface-photovoltaics, supercapacitors, catalysts, and antibacterial surfaces.

17.
Nanotechnology ; 35(39)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38941980

RESUMEN

With the increasing demand for sensing platforms operating across UV, visible, and near-infrared wavelengths, nanoporous gold has emerged as an ideal substrate for rapid, quantitative detection of analytes with excellent specificity and high sensitivity. This study investigates thickness-mediated compositional changes and their impact on scattering characteristics of thin nanoporous gold films fabricated using selective chemical etching. Specifically, we observe thickness-induced morphological and structural changes across different fabricated samples from 25 to 100 nm in thickness. Upon their optical characterization across UV-VIS-NIR spectral regime, we notice that the constitutional differences among samples manifest distinctively & deterministically in their total optical scattering response. In order to gain insights into these observed scattering responses and to fathom the subtle connections between structural properties of NPG films and their optical response, a hybrid theoretical model comprising Maxwell-Garnett & Bruggeman effective medium approximations has been adopted. Our approach not only allows to appropriately account for the inhomogeneous nature of these films, but also corroborates well with the atomic force microscopy characterizations of the fabricated samples. Furthermore, tracing such a theoretical model is important as it helps in systematically ascertaining additional loss terms emerging in the complex dielectric function of films due to their nanoscale porosity & roughness, permitting a good reproduction of measured optical spectra. We believe, our approach will not only facilitate accurate regulation of losses in NPG thin films but will also aid in deriving customized optical performance from them, thereby advancing their potential applications in sensing and beyond.

18.
J Appl Crystallogr ; 57(Pt 3): 714-727, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38846761

RESUMEN

The capillary wave model of a liquid surface predicts both the X-ray specular reflection and the diffuse scattering around it. A quantitative method is presented to obtain the X-ray reflectivity (XRR) from a liquid surface through the diffuse scattering data around the specular reflection measured using a grazing incidence X-ray off-specular scattering (GIXOS) geometry at a fixed horizontal offset angle with respect to the plane of incidence. With this approach the entire Qz -dependent reflectivity profile can be obtained at a single, fixed incident angle. This permits a much faster acquisition of the profile than with conventional reflectometry, where the incident angle must be scanned point by point to obtain a Qz -dependent profile. The XRR derived from the GIXOS-measured diffuse scattering, referred to in this paper as pseudo-reflectivity, provides a larger Qz range compared with the reflectivity measured by conventional reflectometry. Transforming the GIXOS-measured diffuse scattering profile to pseudo-XRR opens up the GIXOS method to widely available specular XRR analysis software tools. Here the GIXOS-derived pseudo-XRR is compared with the XRR measured by specular reflectometry from two simple vapor-liquid interfaces at different surface tension, and from a hexadecyltri-methyl-ammonium bromide monolayer on a water surface. For the simple liquids, excellent agreement (beyond 11 orders of magnitude in signal) is found between the two methods, supporting the approach of using GIXOS-measured diffuse scattering to derive reflectivities. Pseudo-XRR obtained at different horizontal offset angles with respect to the plane of incidence yields indistinguishable results, and this supports the robustness of the GIXOS-XRR approach. The pseudo-XRR method can be extended to soft thin films on a liquid surface, and criteria are established for the applicability of the approach.

19.
Sensors (Basel) ; 24(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793829

RESUMEN

In this review, we meticulously analyze and consolidate various techniques used for measuring the junction temperature of light-emitting diodes (LEDs) by examining recent advancements in the field as reported in the literature. We initiate our exploration by delineating the evolution of LED technology and underscore the criticality of junction temperature detection. Subsequently, we delve into two key facets of LED junction temperature assessment: steady-state and transient measurements. Beginning with an examination of innovations in steady-state junction temperature detection, we cover a spectrum of approaches ranging from traditional one-dimensional methods to more advanced three-dimensional techniques. These include micro-thermocouple, liquid crystal thermography (LCT), temperature sensitive optical parameters (TSOPs), and infrared (IR) thermography methods. We provide a comprehensive summary of the contributions made by researchers in this domain, while also elucidating the merits and demerits of each method. Transitioning to transient detection, we offer a detailed overview of various techniques such as the improved T3ster method, an enhanced one-dimensional continuous rectangular wave method (CRWM), and thermal reflection imaging. Additionally, we introduce novel methods leveraging high-speed camera technology and reflected light intensity (h-SCRLI), as well as micro high-speed transient imaging based on reflected light (µ_HSTI). Finally, we provide a critical appraisal of the advantages and limitations inherent in several transient detection methods and offer prognostications on future developments in this burgeoning field.

20.
Foods ; 13(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731791

RESUMEN

Due to the significant price differences among different types of edible oils, expensive oils like olive oil are often blended with cheaper edible oils. This practice of adulteration in edible oils, aimed at increasing profits for producers, poses a major concern for consumers. Furthermore, adulteration in edible oils can lead to various health issues impacting consumer well-being. In order to meet the requirements of fast, non-destructive, universal, accurate, and reliable quality testing for edible oil, the oblique-incidence reflectivity difference (OIRD) method combined with machine learning algorithms was introduced to detect a variety of edible oils. The prediction accuracy of Gradient Boosting, K-Nearest Neighbor, and Random Forest models all exceeded 95%. Moreover, the contribution rates of the OIRD signal, DC signal, and fundamental frequency signal to the classification results were 45.7%, 34.1%, and 20.2%, respectively. In a quality evaluation experiment on olive oil, the feature importance scores of three signals reached 63.4%, 18.9%, and 17.6%. The results suggested that the feature importance score of the OIRD signal was significantly higher than that of the DC and fundamental frequency signals. The experimental results indicate that the OIRD method can serve as a powerful tool for detecting edible oils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA