Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(21): 4789-4805, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878180

RESUMEN

Organic-inorganic hybrid nanocomposites (OIHN), with tailored surface chemistry, offer ultra-sensitive architecture capable of detecting ultra-low concentrations of target analytes with precision. In the present work, a novel nano-biosensor was fabricated, acquainting dynamic synergy of reduced graphene oxide (rGO) decorated hexagonal boron nitride nanosheets (hBNNS) for detection of carcinoembryonic antigen (CEA). Extensive spectroscopic and microscopic analyses confirmed the successful hydrothermal synthesis of cross-linked rGO-hBNNS nanocomposite. Uniform micro-electrodes of rGO-hBNNS onto pre-hydrolyzed ITO were obtained via electrophoretic deposition (EPD) technique at low DC potential (15 V). Optimization of antibody incubation time, pH of supporting electrolyte, and immunoelectrode preparation was thoroughly investigated to enhance nano-biosensing efficacy. rGO-modified hBNNS demonstrated 29% boost in electrochemical performance over bare hBNNS, signifying remarkable electro-catalytic activity of nano-biosensor. The presence of multifunctional groups on the interface facilitated stable crosslinking chemistry, increased immobilization density, and enabled site-specific anchoring of Anti-CEA, resulting in improved binding affinity. The nano-biosensor demonstrated a remarkably low limit of detection of 5.47 pg/mL (R2 = 0.99963), indicating exceptional sensitivity and accuracy in detecting CEA concentrations from 0 to 50 ng/mL. The clinical evaluation confirmed its exceptional shelf life, minimal cross-reactivity, and robust recovery rates in human serum samples, thereby unraveling the potential for early, highly sensitive, and reliable CEA detection.


Asunto(s)
Técnicas Biosensibles , Compuestos de Boro , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Grafito , Límite de Detección , Nanocompuestos , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/análisis , Grafito/química , Nanocompuestos/química , Técnicas Electroquímicas/métodos , Humanos , Técnicas Biosensibles/métodos , Compuestos de Boro/química , Catálisis , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología
2.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791473

RESUMEN

Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Grafito , Estrés Oxidativo , Inhibidores de Proteasoma , Humanos , Grafito/farmacología , Grafito/química , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inhibidores de Proteasoma/farmacología , Femenino , Leupeptinas/farmacología , Sinergismo Farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
3.
Environ Res ; 252(Pt 1): 118881, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582430

RESUMEN

Nitrate reduction in bio-electrochemical systems (BESs) has attracted wide attention due to its low sludge yields and cost-efficiency advantages. However, the high resistance of traditional electrodes is considered to limit the denitrification performance of BESs. Herein, a new graphene/polypyrrole (rGO/PPy) modified electrode is fabricated via one-step electrodeposition and used as cathode in BES for improving nitrate removal from wastewater. The formation and morphological results support the successful formation of rGO/PPy nanohybrids and confirm the part covalent bonding of Py into GO honeycomb lattices to form a three-dimensional cross-linked spatial structure. The electrochemical tests indicate that the rGO/PPy electrode outperforms the unmodified electrode due to the 3.9-fold increase in electrochemical active surface area and 6.9-fold decrease in the charge transfer resistance (Rct). Batch denitrification activity tests demonstrate that the BES equipped with modified rGO/PPy biocathode could not only achieve the full denitrification efficiency of 100% with energy recovery (15.9 × 10-2 ± 0.14 A/m2), but also favor microbial attach and growth with improved biocompatible surface. This work provides a feasible electrochemical route to fabricate and design a high-performance bioelectrode to enhance denitrification in BESs.


Asunto(s)
Desnitrificación , Electrodos , Grafito , Polímeros , Pirroles , Grafito/química , Polímeros/química , Pirroles/química , Técnicas Electroquímicas/métodos , Fuentes de Energía Bioeléctrica , Nitratos/química , Carbono/química , Fibra de Carbono/química
4.
Environ Sci Pollut Res Int ; 31(14): 20983-20998, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38381290

RESUMEN

This work investigates the photocatalytic performance of V2O5 and V3O7 nanoparticles and their nanocomposites with rGO. The as-annealed V2O5 and V3O7 nanoparticles exhibited pure orthorhombic and monoclinic structures with an optical bandgap of 2.3 and 2.5 eV, respectively. The corresponding vibrational modes using Raman and FTIR spectroscopy analysis further confirm the form. The morphological studies reveal that V2O5 and V3O7 nanoparticles possess plate and petal-like morphology, respectively. Moreover, in the case of V2O5/V3O7-rGO nanocomposites, the plate/petal-like nanoparticles are embedded within rGO sheets. Incorporating nanoparticles within rGO sheets has quenched the green photoluminescence emission, enhancing their photocatalytic performance upon irradiation with white light of 100 mW/cm2. This is ascribed to the effective transport of interfacial electrons from vanadium oxide nanoparticles to the rGO surface, reducing the recombination of photogenerated charge carriers. These results indicate that the vanadium oxide/rGO nanocomposites have potential applications in wastewater treatment.


Asunto(s)
Grafito , Azul de Metileno , Nanocompuestos , Azul de Metileno/química , Vanadio , Catálisis , Óxidos/química , Nanocompuestos/química
5.
Nanomaterials (Basel) ; 13(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887896

RESUMEN

Hexavalent chromium (Cr(VI)) is a typical heavy metal pollutant, making its removal from wastewater imperative. Although nanosized zero-valent iron (nZVI) and graphene-based materials are excellent remediation materials, they have drawbacks, such as agglomeration and being difficult to recycle. A facile synthesis method for decorating reduced graphene oxide (rGO) with ultrathin nZVI (within 10 nm) was explored in this study in order to develop an effective tool for Cr(VI) detoxication. Cu particles were doped in these composites for electron-transfer enhancement and were verified to improve the rate by 2.4~3.4 times. Batch experiments were conducted at different pHs, initial concentrations, ionic strengths, and humic acid (HA) concentrations. From these observations, it was found that the acid condition and appearance of Cu and rGO enhanced the treatment capacity. This procedure was fitted with a pseudo-second-order model, and the existence of NaCl and HA impeded it to some extent. Cr(VI) could be detoxified into Cr(III) and precipitated on the surface. Combining these analyses, a kinetics study, and the characterizations before and after the reaction, the removal mechanism of Cr(VI) was further discussed as a complex process involving adsorption, reduction, and precipitation. The maximum removal capacity of 156.25 mg g-1 occurred in the acid condition, providing a potential Cr(VI) remediation method.

6.
Micromachines (Basel) ; 14(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37763864

RESUMEN

Pastes containing reduced graphene oxide (rGO) and LiCl-Mn(NO3)2·4H2O are screen-printed on a carbon cloth substrate and then calcined using a nitrogen atmospheric-pressure plasma jet (APPJ) for conversion into rGO-LiMnOx nanocomposites. The APPJ processing time is within 300 s. RGO-LiMnOx on carbon cloth is used to sandwich H2SO4, LiCl, or Li2SO4 gel electrolytes to form hybrid supercapacitors (HSCs). The areal capacitance, energy density, and cycling stability of the HSCs are evaluated using electrochemical measurement. The HSC utilizing the Li2SO4 gel electrolyte exhibits enhanced electrode-electrolyte interface reactions and increased effective surface area due to its high pseudocapacitance (PC) ratio and lithium ion migration rate. As a result, it demonstrates the highest areal capacitance and energy density. The coupling of charges generated by embedded lithium ions with the electric double-layer capacitance (EDLC) further contributed to the significant overall capacitance enhancement. Conversely, the HSC with the H2SO4 gel electrolyte exhibits better cycling stability. Our findings shed light on the interplay between gel electrolytes and electrode materials, offering insights into the design and optimization of high-performance HSCs.

7.
Nanomaterials (Basel) ; 13(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37630960

RESUMEN

A human body monitoring system remains a significant focus, and to address the challenges in wearable sensors, a nanotechnology-enhanced strategy is proposed for designing stretchable metal-organic polymer nanocomposites. The nanocomposite comprises reduced graphene oxide (rGO) and in-situ generated silver nanoparticles (AgNPs) within elastic electrospun polystyrene-butadiene-polystyrene (SBS) fibers. The resulting Sandwich Structure Piezoresistive Woven Nanofabric (SSPWN) is a tactile-sensitive wearable sensor with remarkable performance. It exhibits a rapid response time (less than three milliseconds) and high reproducible stability over 5500 cycles. The nanocomposite also demonstrates exceptional thermal stability due to effective connections between rGO and AgNPs, making it suitable for wearable electronic applications. Furthermore, the SSPWN is successfully applied to human motion monitoring, including various areas of the hand and RGB sensing shoes for foot motion monitoring. This nanotechnology-enhanced strategy shows promising potential for intelligent healthcare, health monitoring, gait detection, and analysis, offering exciting prospects for future wearable electronic products.

8.
Materials (Basel) ; 16(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570090

RESUMEN

Graphene and its derivatives have been widely used to develop novel materials with applications in energy storage. Among them, reduced graphene oxide has shown great potential for more efficient storage of Na ions and is a current target in the design of electrodes for environmentally friendly Na ion batteries. The search for more sustainable and versatile manufacturing processes also motivates research into additive manufacturing electrodes. Here, the electrochemical responses of porous 3D-printed free-standing log-type structures fabricated using direct ink writing (DIW) with a graphene oxide (GO) gel ink are investigated after thermal reduction in a three-electrode cell configuration. The structures delivered capacities in the range of 50-80 mAh g-1 and showed high stability for more than 100 cycles. The reaction with the electrolyte/solvent system, which caused an initial capacity drop, was evidenced by the nucleation of various Na carbonates and Na2O. The incorporation of Na into the filaments of the structure was verified with transmission electron microscopy and Raman spectroscopy. This work is a proof of concept that structured reduced GO electrodes for Na ion batteries can be achieved from a simple, aqueous GO ink through DIW and that there is scope for improving their performance and capacity.

9.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570537

RESUMEN

An ethylenediamine (EDA) gas sensor based on a composite of MoO3 nanoribbon and reduced graphene oxide (rGO) was fabricated in this work. MoO3 nanoribbon/rGO composites were synthesized using a hydrothermal process. The crystal structure, morphology, and elemental composition of MoO3/rGO were analyzed via XRD, FT-IR, Raman, TEM, SEM, XPS, and EPR characterization. The response value of MoO3/rGO to 100 ppm ethylenediamine was 843.7 at room temperature, 1.9 times higher than that of MoO3 nanoribbons. The MoO3/rGO sensor has a low detection limit (LOD) of 0.235 ppm, short response time (8 s), good selectivity, and long-term stability. The improved gas-sensitive performance of MoO3/rGO composites is mainly due to the excellent electron transport properties of graphene, the generation of heterojunctions, the higher content of oxygen vacancies, and the large specific surface area in the composites. This study presents a new approach to efficiently and selectively detect ethylenediamine vapor with low power.

10.
Int J Biol Macromol ; 250: 126197, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37558032

RESUMEN

Cellulose nanofiber (CNF) aerogels hold considerable potential in wearable devices as pressure sensors and flexible electrochemical energy storage. However, the undirectional assembly of CNFs results in poor mechanical performance, which limits their application in structural engineering. In this study, we propose an anisotropic aerogel with both elastic and conductive properties inspired by the micro-nanostructure of natural wood. One-dimensional TEMPO cellulose nanofibers (TOCNF) were utilized as structural building blocks, while two-dimensional reduced graphene oxide (rGO) served as the electron transfer platform, owing to their high mechanical strength. The directionally aligned tubular structure composed of multilayered sheets was formed through rapid unidirectional freezing and subsequent steam heating reduction. These structures efficiently transferred stress throughout the porous skeleton, resulting in TOCNF-rGO aerogels with high compressibility and excellent fatigue resistance (2000 cycles at 60 % strain). The aerogel also exhibited high sensitivity, wide detection range, relatively fast response, and excellent compression cycle stability, making it suitable for accurately detecting various human biological and motion signals. Additionally, TOCNF-rGO can be assembled into a flexible all-solid-state symmetric supercapacitor that delivers excellent electrochemical performance. It is expected that this biomass-derived aerogel will be a versatile material for flexible electronic devices for energy conversion and storage.

11.
Anal Biochem ; 674: 115207, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290576

RESUMEN

DNA methylation refers to the chemical modification process of obtaining a methyl group by the covalent bonding of a specific base in DNA sequence with S-adenosyl methionine (SAM) as a methyl donor under the catalysis of methyltransferase (MTase), which is related to the occurrence of multiple diseases. Therefore, the detection of MTase activity is of great significance for disease diagnosis and drug screening. Because reduced graphene oxide (rGO) has a unique planar structure and remarkable catalytic performance, it is not clear whether rGO can rapidly catalyze silver deposition as an effective way of signal amplification. However, in this study, we were pleasantly surprised to find that using H2O2 as a reducing agent, rGO can rapidly catalyze silver deposition, and its catalytic efficiency of silver deposition is significantly better than that of GO. Therefore, based on further verifying the mechanism of catalytic properties of rGO, we constructed a novel electrochemical biosensor (rGO/silver biosensor) for the detection of dam MTase activity, which has high selectivity and sensitivity to MTase in the range of 0.1 U/mL to 10.0 U/mL, and the detection limit is as low as 0.07 U/mL. Besides, this study also used Gentamicin and 5-Fluorouracil as inhibitor models, confirming that the biosensor has a good application prospect in the high-throughput screening of dam MTase inhibitors.


Asunto(s)
Técnicas Biosensibles , Grafito , Plata/química , Peróxido de Hidrógeno , Metiltransferasas , Grafito/química , Técnicas Biosensibles/métodos , Metilación de ADN
12.
Biosensors (Basel) ; 13(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37185563

RESUMEN

Pesticides are often used in different applications, including agriculture, forestry, aquaculture, food industry, etc., for the purpose of controlling insect pests and weeds. The indiscriminate usage of pesticides poses a massive threat to food, environmental, and human health safety. Hence, the fabrication of a sensitive and reliable sensor for the detection of pesticide residues in agro products and environmental samples is a critical subject to be considered. Recently, the graphene family including graphene oxide (GO) and reduced graphene oxide (rGO) have been frequently employed in the construction of sensors owing to their biocompatibility, high surface-area-to-volume ratio, and excellent physiochemical, optical, and electrical properties. The integration of biorecognition molecules with GO/rGO nanomaterials offers a promising detection strategy with outstanding repeatability, signal intensity, and low background noise. This review focuses on the latest developments (2018 to 2022) in the different types of GO/rGO-based biosensors, such as surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and electrochemical-based techniques, among other, for pesticide analysis. The critical discussions on the advantages, limitations, and sensing mechanisms of emerging GO/rGO-based biosensors are also highlighted. Additionally, we explore the existing hurdles in GO/rGO-based biosensors, such as handling difficult biological samples, reducing the total cost, and so on. This review also outlines the research gaps and viewpoints for future innovations in GO/rGO-based biosensors for pesticide determination mainly in areas with insufficient resources.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Plaguicidas , Humanos , Grafito/química , Nanoestructuras/química , Técnicas Biosensibles/métodos
13.
Nanomaterials (Basel) ; 13(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110977

RESUMEN

A way to obtain graphene-based materials on a large-scale level is by means of chemical methods for the oxidation of graphite to obtain graphene oxide (GO), in combination with thermal, laser, chemical and electrochemical reduction methods to produce reduced graphene oxide (rGO). Among these methods, thermal and laser-based reduction processes are attractive, due to their fast and low-cost characteristics. In this study, first a modified Hummer's method was applied to obtain graphite oxide (GrO)/graphene oxide. Subsequently, an electrical furnace, a fusion instrument, a tubular reactor, a heating plate, and a microwave oven were used for the thermal reduction, and UV and CO2 lasers were used for the photothermal and/or photochemical reduction. The chemical and structural characterizations of the fabricated rGO samples were performed by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy measurements. The analysis and comparison of the results revealed that the strongest feature of the thermal reduction methods is the production of high specific surface area, fundamental for volumetric energy applications such as hydrogen storage, whereas in the case of the laser reduction methods, a highly localized reduction is achieved, ideal for microsupercapacitors in flexible electronics.

14.
Nanomaterials (Basel) ; 13(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36839151

RESUMEN

In recent years, research has focused on developing materials exhibiting outstanding mechanical, electrical, thermal, catalytic, magnetic and optical properties such as graphene/polymer, graphene/metal nanoparticles and graphene/ceramic nanocomposites. Two-dimensional sp2 hybridized graphene has become a material of choice in research due to the excellent properties it displays electrically, thermally, optically and mechanically. Noble nanomaterials also present special physical and chemical properties and, therefore, they provide model building blocks in modifying nanoscale structures for various applications, ranging from nanomedicine to catalysis and optics. The introduction of noble metal nanoparticles (NPs) (Au, Ag and Pd) into chemically derived graphene is important in opening new avenues for both materials in different fields where they can provide hybrid materials with exceptional performance due to the synergistical result of the specific properties of each of the materials. This review presents the different synthetic procedures for preparing Pt, Ag, Pd and Au NP/graphene oxide (GO) and reduced graphene oxide (rGO) composites.

15.
J Colloid Interface Sci ; 638: 709-718, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36780851

RESUMEN

Among many supercapacitor electrode materials, carbon materials are widely used due to their large specific surface area, good electrical conductivity and high economic efficiency. However, carbon-based supercapacitors face the challenges of low energy density and limited operating environment. This work reports a facile self-assembled method to prepare three-dimensional carbon nanotubes/reduced graphene oxide (CNTs/rGO) aerogel material, which was applied as both positive and negative electrodes in a symmetric superacapacitor. The fabricated supercapacitor exhibited prominent capacitive performance not only at room temperature, but also at extreme temperatures (-20 âˆ¼ 80 °C). The specific capacitances of the symmetric supercapacitors based on CNTs/rGO at a weight ratio of 2:5 respectively reached 107.8 and 128.2 F g-1 at 25 °C and 80 °C with KOH as the electrolyte, and 80.0 and 144.6 F g-1 at -20 °C and 60 °C with deep eutectic solvent as the electrolyte. Notably, the capacitance retention and coulombic efficiency of the assembled supercapacitors remained almost unchanged after 20,000 cycles of charge/discharge test over a wide temperature range. The work uncovered a possibility for the development of high-performance supercapacitors flexibly operated at extreme temperatures.

16.
Environ Sci Pollut Res Int ; 30(17): 51125-51142, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36808038

RESUMEN

A reduced graphene oxide (RGO) supported Fe3O4-MnO2 nanocomposite (Fe3O4-MnO2@RGO) was successfully prepared for catalytic degradation of oxytetracycline (20 mg/L) by potassium persulfate (PS) and adsorption removal of mixture of Pb2+, Cu2+, and Cd2+ ions (each 0.2 mM) in the synchronous scenario. The removal efficiencies of oxytetracycline, Pb2+, Cu2+, and Cd2+ ions were observed as high as 100%, 99.9%, 99.8%, and 99.8%, respectively, under the conditions of [PS]0 = 4 mM, pH0 = 7.0, Fe3O4-MnO2@RGO dosage = 0.8 g/L, reaction time = 90 min. The ternary composite exhibited higher oxytetracycline degradation/mineralization efficiency, greater metal adsorption capacity (Cd2+ 104.1 mg/g, Pb2+ 206.8 mg/g, Cu2+ 70.2 mg/g), and better PS utilization (62.6%) than its unary and binary counterparts including RGO, Fe3O4, Fe3O4@RGO, and Fe3O4-MnO2. More importantly, the ternary composite had good magnetic recoverability and excellent reusability. Notably, Fe, Mn, and RGO could play a synergistic role in the improvement of pollutant removal. Quenching results indicate that surface bounded SO4•- was the major contributor to oxytetracycline decomposition, and the -OH groups on the composite surface shouldered a significant role in PS activation. The results indicate that the magnetic Fe3O4-MnO2@RGO nanocomposite has a good potential for removing organic-metal co-contaminants in waterbody.


Asunto(s)
Nanocompuestos , Oxitetraciclina , Óxidos , Cadmio , Compuestos de Manganeso , Plomo , Agua , Fenómenos Magnéticos
17.
ACS Appl Mater Interfaces ; 15(3): 3731-3743, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36626669

RESUMEN

Piezoelectric materials are promising for biomedical applications because they can provide mechanical or electrical stimulations via converse or direct piezoelectric effects. The stimulations have been proven to be beneficial for cell proliferation and tissue regeneration. Recent reports showed that doping different contents of reduced graphene oxide (rGO) or polyaniline (PANi) into biodegradable polyhydroxybutyrate (PHB) enhanced their piezoelectric response, showing potential for biomedical applications. In this study, we aim to determine the correlation between physiochemical properties and the in vitro cell response to the PHB-based composite scaffolds with rGO or PANi. Specifically, we characterized the surface morphology, wetting behavior, electrochemical impedance, and piezoelectric properties of the composites and controls. The addition of rGO and PANi resulted in decreased fiber diameters and hydrophobicity of PHB. The increased surface energy of PHB after doping nanofillers led to a reduced water contact angle (WCA) from 101.84 ± 2.18° (for PHB) to 88.43 ± 0.83° after the addition of 3 wt % PANi, whereas doping 1 wt % rGO decreased the WCA value to 92.56 ± 2.43°. Meanwhile, doping 0.2 wt % rGO into PHB improved the piezoelectric properties compared to the PHB control and other composites. Adding up to 1 wt % rGO or 3 wt % PANi nanofillers in PHB did not affect the adhesion densities of bone marrow-derived mesenchymal stem cells (BMSCs) on the scaffolds. The aspect ratios of attached BMSCs on the composite scaffolds increased compared to the PHB control. The study indicated that the PHB-based composites are promising for potential applications such as regenerative medicine, tissue stimulation, and bio-sensing, which should be further studied.


Asunto(s)
Grafito , Células Madre Mesenquimatosas , Polímeros/farmacología , Polímeros/química , Grafito/farmacología , Grafito/química
18.
Anal Chim Acta ; 1242: 340716, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657883

RESUMEN

In this research, by using aptamer-conjugated gold nanoparticles (aptamer-AuNPs) and a modified glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and Acropora-like gold (ALG) nanostructure, a sandwich-like system provided for sensitive detection of heat shock protein 70 kDa (HSP70), which applied as a functional biomarker in diagnosis/prognosis of COVID-19. Initially, the surface of the GCE was improved with rGO and ALG nanostructures, respectively. Then, an aptamer sequence as the first part of the bioreceptor was covalently bound on the surface of the GCE/rGO/ALG nanostructures. After adding the analyte, the second part of the bioreceptor (aptamer-AuNPs) was immobilized on the electrode surface to improve the diagnostic performance. The designed aptasensor detected HSP70 in a wide linear range, from 5 pg mL-1 to 75 ng mL-1, with a limit of detection (LOD) of ∼2 pg mL-1. The aptasensor was stable for 3 weeks and applicable in detecting 40 real plasma samples of COVID-19 patients. The diagnostic sensitivity and specificity were 90% and 85%, respectively, compared with the reverse transcription-polymerase chain reaction (RT-PCR) method.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , COVID-19 , Grafito , Nanopartículas del Metal , Humanos , Oro/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , COVID-19/diagnóstico , Grafito/química , Carbono/química , Límite de Detección , Pronóstico , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Electrodos , Prueba de COVID-19
19.
Chemosphere ; 311(Pt 1): 136934, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36273614

RESUMEN

Green synthesis of high-quality reduced graphene oxide (rGO) from agro-industrial waste resources remains attractive owing to its outstanding environmental benefits. The remarkable properties of rGO include excellent morphology, uniform particle size, good optical properties, high conductivity, nontoxicity, and extraordinary chemical stability. Traditional methods for the synthesis of rGO nanomaterials involve several chemical reactions including oxidation, carbonization, toxic solvent, and pyrolysis which produce harmful byproducts. Green preparation of rGO is an emerging area of research in graphene technology which is cost-effective and sustainable in the procedure. Owing to the uniform particle rGO particle size, these smart nanomaterials have wide applicability, including in metal ions and pollutant sensing and adsorption, photocatalysis, optoelectrical devices, medical diagnosis, and drug delivery. Here we review the physicochemical properties of rGO, the biowaste sources and green methods of rGO synthesis, and the diverse applications of rGO, including in water purification and the biomedical fields. With this review, covering more than 200 research articles published on rGO in the last eight years ending in 2022, we aim to provide a quick guide for researchers seeking up-to-date information on the properties, production, and applicability of rGO, with special attention to rGO applications in water purification and the biomedical fields.


Asunto(s)
Grafito , Nanoestructuras , Grafito/química , Óxidos/química , Nanoestructuras/química , Oxidación-Reducción
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121862, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122465

RESUMEN

In response to the growing need for development of modern biomaterials for applications in regenerative medicine strategies, the research presented here investigated the biological potential of two types of polymer nanocomposites. Graphene oxide (GO) and partially reduced graphene oxide (rGO) were incorporated into a poly(ε-caprolactone) (PCL) matrix, creating PCL/GO and PCL/rGO nanocomposites in the form of membranes. Proliferation of osteoblast-like cells (human U-2 OS cell line) on the surface of the studied materials confirmed their biological activity. Fluorescence microscopy was able to distinguish the different patterns of interaction between cells (depending on the type of material) after 15 days of the test run. Raman micro-spectroscopy and two-dimensional correlation spectroscopy (2D-COS) applied to Raman spectra distinguished the nature of cell-material interactions after only 8 days. Combination of these two techniques (Raman micro-spectroscopy and 2D-COS analysis) facilitated identification of a much more complex cellular response (especially from proteins) on the surface of PCL/GO. The presented approach can be regarded as a method for early study of the bioactivity of membrane materials.


Asunto(s)
Grafito , Humanos , Grafito/farmacología , Grafito/química , Poliésteres/química , Polímeros , Osteoblastos , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA