Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38929414

RESUMEN

Red pandas evolved from carnivores to herbivores and are unique within Carnivora. Red pandas and carnivorous mammals consume milk during the suckling period, while they consume bamboo and meat during the adult period, respectively. Red pandas and carnivorous mammal ferrets have a close phylogenetic relationship. To further investigate the molecular mechanisms of dietary changes and nutrient utilization in red pandas from suckling to adult, comparative analysis of the whole transcriptome was performed on stomach tissues from red pandas and ferrets during the suckling and adult periods. The main results are as follows: (1) we identified ncRNAs for the first time in stomach tissues of both species, and found significant expression changes of 109 lncRNAs and 106 miRNAs in red pandas and 756 lncRNAs and 109 miRNAs in ferrets between the two periods; (2) up-regulated genes related to amino acid transport regulated by lncRNA-miRNA-mRNA networks may efficiently utilize limited bamboo amino acids in adult red pandas, while up-regulated genes related to amino acid degradation regulated by lncRNAs may maintain the balance of amino acid metabolism due to larger daily intakes in adult ferrets; and (3) some up-regulated genes related to lipid digestion may contribute to the utilization of rich nutrients in milk for the rapid growth and development of suckling red pandas, while up-regulated genes associated with linoleic acid metabolism regulated by lncRNA-miRNA-mRNA networks may promote cholesterol decomposition to reduce health risks for carnivorous adult ferrets. Collectively, our study offers evidence of gene expression adaptation and ncRNA regulation in response to specific dietary changes and nutrient utilization in red pandas during suckling and adult periods.

2.
Evol Appl ; 17(6): e13731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38894980

RESUMEN

Epigenetic regulation plays an important role in the evolution of species adaptations, yet little information is available on the epigenetic mechanisms underlying the adaptive evolution of bamboo-eating in both giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens). To investigate the potential contribution of epigenetic to the adaptive evolution of bamboo-eating in giant and red pandas, we performed hepatic comparative transcriptome and methylome analyses between bamboo-eating pandas and carnivorous polar bears (Ursus maritimus). We found that genes involved in carbohydrate, lipid, amino acid, and protein metabolism showed significant differences in methylation and expression levels between the two panda species and polar bears. Clustering analysis of gene expression revealed that giant pandas did not form a sister group with the more closely related polar bears, suggesting that the expression pattern of genes in livers of giant pandas and red pandas have evolved convergently driven by their similar diets. Compared to polar bears, some key genes involved in carbohydrate metabolism and biological oxidation and cholesterol synthesis showed hypomethylation and higher expression in giant and red pandas, while genes involved in fat digestion and absorption, fatty acid metabolism, lysine degradation, resistance to lipid peroxidation and detoxification showed hypermethylation and low expression. Our study elucidates the special nutrient utilization mechanism of giant pandas and red pandas and provides some insights into the molecular mechanism of their adaptive evolution of bamboo feeding. This has important implications for the breeding and conservation of giant pandas and red pandas.

3.
Sci Total Environ ; 931: 172523, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657804

RESUMEN

Landscape features can impede dispersal, gene flow, and population demography, resulting in the formation of several meta-populations within a continuous landscape. Understanding a species' ability to overcome these barriers is critical for predicting genetic connectivity and population persistence, and implementing effective conservation strategies. In the present study, we conducted a fine-scale spatial genetic analysis to understand the contemporary gene flow within red panda populations in the Eastern Himalayas. Employing geometric aspects of reserve design, we delineated the critical core habitats for red pandas, which comprise 14.5 % of the landscape (12,189.75 Km2), with only a mere 443 Km2 falling within the protected areas. We identified corridors among the core habitats, which may be vital for the species' long-term genetic viability. Furthermore, we identified substantial landscape barriers, including Sela Pass in the western region, Siang river in the central region, and the Dibang river, Lohit river, along with Dihang, Dipher, and Kumjawng passes in the eastern region, which hinder gene flow. We suggest managing red panda populations through the creation of Community Conservation Reserves in the identified core habitats, following landscape-level management planning based on the core principles of geometric reserve design. This includes a specific emphasis on identified core habitats of red panda (CH-RP 5 and CH-RP 8) to facilitate corridors and implement meta-population dynamics. We propose the development of a comprehensive, long-term conservation and management plan for red pandas in the transboundary landscape, covering China, Nepal, and Bhutan.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Flujo Génico , Ursidae , Animales , Ursidae/genética , China , Distribución Animal , Himalayas
4.
Microorganisms ; 12(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38543529

RESUMEN

Animals can adapt to unique feeding habits through changes in the structure and function of the gut microflora. However, the gut microflora is strongly influenced by the evolutionary relationships between the host, nutritional intake, intake of microorganisms, etc. The red panda (Ailurus fulgens), an herbivorous carnivore, has adapted to consuming bamboo through seasonal foraging strategies and optimization of the composition and function of its gut microflora during long-term evolution. However, to date, studies of the gut bacteria of the red panda have mainly focused on the composition, diversity and function of the gut microflora of captive individuals. There are a lack of studies on how the wild red panda adapts to the consumption of bamboo, which is high in fibre and low in nutrients, through the gut microflora. This paper reviews the technology and methods used in published studies investigating the gut microflora of the red panda, as well as the composition, diversity and function of the identified microbes and the influencing factors. Furthermore, this paper suggests future research directions regarding the methodology employed in analyzing the red panda gut microflora, the interplay between gut microflora and the health of the red panda, the red panda's adaptation to its gut microflora, and the implications of these studies for the management and conservation of wild red pandas. The goal of this review is to provide a reference for the protection of wild red pandas from the perspective of the gut microflora.

5.
Integr Zool ; 19(4): 662-682, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38420673

RESUMEN

The red panda (Ailurus fulgens) is a distinctive mammal known for its reliance on a diet primarily consisting of bamboo. The gut microbiota and overall health of animals are strongly influenced by diets and environments. Therefore, conducting research to explore the taxonomical and functional variances within the gut microbiota of red pandas exposed to various dietary and environmental conditions could shed light on the dynamic complexities of their microbial communities. In this study, normal fecal samples were obtained from red pandas residing in captive and semi-free environments under different dietary regimes and used for metabolomic, 16S rRNA, and metagenomic sequencing analysis, with the pandas classified into four distinct cohorts according to diet and environment. In addition, metagenomic sequencing was conducted on mucus fecal samples to elucidate potential etiological agents of disease. Results revealed an increased risk of gastrointestinal diseases in red pandas consuming bamboo shoots due to the heightened presence of pathogenic bacteria, although an increased presence of microbiota-derived tryptophan metabolites appeared to facilitate intestinal balance. The red pandas fed bamboo leaves also exhibited a decrease in gut microbial diversity, which may be attributed to the antibacterial flavonoids and lower protein levels in leaves. Notably, red pandas residing in semi-free environments demonstrated an enriched gut microbial diversity. Moreover, the occurrence of mucus secretion may be due to an increased presence of species associated with diarrhea and a reduced level of microbiota-derived tryptophan metabolites. In summary, our findings substantiate the influential role of diet and environment in modulating the gut microbiota of red pandas, offering potential implications for improved captive breeding practices.


Asunto(s)
Ailuridae , Dieta , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/fisiología , Dieta/veterinaria , Ailuridae/microbiología , Heces/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Alimentación Animal/análisis , Ambiente
6.
Vet Pathol ; 61(2): 269-278, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37681307

RESUMEN

The roster of amdoparvoviruses (APVs) in small carnivores is growing rapidly, but in most cases, the consequences of infection are poorly understood. Red panda amdoparvovirus (RPAV) is highly prevalent in zoo-housed red pandas and has been detected in both healthy and sick animals. Clarifying the clinical impact of RPAV in this endangered species is critical, and zoological collections offer a unique opportunity to examine viral disease association in carefully managed populations. We evaluated the potential impact of RPAV in captive red pandas with a combination of prospective and retrospective analyses. First, we collected feces from 2 healthy animals from one collection over a 6-year period and detected virus in 72/75 total samples, suggesting that RPAV can be a long-term subclinical infection. We next investigated the infections using a retrospective study of infection status and tissue distribution in a cohort of necropsied animals. We performed polymerase chain reaction and in situ hybridization on 43 necropsy cases from 4 zoo collections (3 from the United States, 1 from Europe, 1997-2022). RPAV was present in these populations for at least 2 decades before its discovery and is detectable in common and significant lesions of zoo-housed red pandas, including myocarditis (3/3 cases), nephritis (9/10), and interstitial pneumonia (2/4). RPAV is also detectable in sporadic lesions, including multisystemic pyogranulomatous inflammation, oral/pharyngeal mucosal inflammation, and dermatitis. The colocalization of virus with lesions supports a role in causation, suggesting that despite the apparently persistent and subclinical carriage of most infections, RPAV may have a significant impact in zoo collections.


Asunto(s)
Ailuridae , Humanos , Animales , Estudios Retrospectivos , Estudios Prospectivos , Especies en Peligro de Extinción , Inflamación/veterinaria
7.
Annu Rev Anim Biosci ; 12: 69-89, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37863091

RESUMEN

Giant pandas and red pandas are endangered species with similar specialized bamboo diet and partial sympatric distribution in China. Over the last two decades, the rapid development of genomics and metagenomics research on these species has enriched our knowledge of their biology, ecology, physiology, genetics, and evolution, which is crucial and useful for their conservation. We describe the evolutionary history, endangerment processes, genetic diversity, and population structure of wild giant pandas and two species of red pandas (Chinese and Himalayan red pandas). In addition, we explore how genomics and metagenomics studies have provided insight into the convergent adaptation of pandas to the specialized bamboo diet. Finally, we discuss how these findings are applied to effective conservation management of giant and red pandas in the wild and in captivity to promote the long-term persistence of these species.


Asunto(s)
Ursidae , Animales , Ursidae/genética , Genómica
8.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-38070877

RESUMEN

The gut microbiome plays an important role in the health and fitness of hosts. While previous studies have characterized the importance of various ecological and evolutionary factors in shaping the composition of the gut microbiome, most studies have been cross-sectional in nature, ignoring temporal variation. Thus, it remains unknown how these same factors might affect the stability and dynamics of the gut microbiome over time, resulting in variation across the tree of life. Here, we used samples collected in each of four seasons for three taxa: the herbivorous southern white rhinoceros (Ceratotherium simum simum, n = 5); the carnivorous Sumatran tiger (Panthera tigris sumatrae, n = 5); and the red panda (Ailurus fulgens, n = 9), a herbivorous carnivore that underwent a diet shift in its evolutionary history from carnivory to a primarily bamboo-based diet. We characterize the variability of the gut microbiome among these three taxa across time to elucidate the influence of diet and host species on these dynamics. Altogether, we found that red pandas exhibit marked seasonal variation in their gut microbial communities, experiencing both high microbial community turnover and high variation in how individual red panda's gut microbiota respond to seasonal changes. Conversely, while the gut microbiota of rhinoceros change throughout the year, all individuals respond in the same way to seasonal changes. Tigers experience relatively low levels of turnover throughout the year, yet the ways in which individuals respond to seasonal transitions are highly varied. We highlight how the differences in microbiome richness and network connectivity between these three species may affect the level of temporal stability in the gut microbiota across the year.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Estaciones del Año , Estudios Transversales , ARN Ribosómico 16S , Dieta/veterinaria , Perisodáctilos
9.
Front Vet Sci ; 10: 1276248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954668

RESUMEN

Red panda amdoparvovirus (RPAV) was first described in captive red pandas (Ailurus fulgens) at a zoo in the United States in 2018. Subsequently, the prevalence of infection in zoos in the United States was reported to be 50%; however, RPAV prevalence outside the United States remains unstudied. This study was conducted to investigate the prevalence of RPAV in 134 red pandas from zoos in Europe. Overall, RPAV was detected with PCR in 21 of 62 zoos (33.9%), and the virus prevalence among individuals was estimated to be 24.2% (95% confidence interval, 17.4%-32.0%). Remarkably, adult females tested positive for RPAV more frequently than adult males. Zoos where RPAV was detected reported a significantly higher occurrence of alopecia (and clinical signs in general), whereas other commonly reported problems (fecal disorders and dental disease) showed no difference. A repeated pooled sampling of two positive individuals further showed that RPAV excretion in feces is intermittent, with the viral DNA being only detected on 8 out of 14 sampling days. The intermittent nature of excretion implies that RPAV prevalence may be higher than the estimated value.

10.
Animals (Basel) ; 13(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37889781

RESUMEN

Enterocytozoon bieneusi and Encephalitozoon spp. are microsporidian pathogens with zoonotic potential that pose significant public health concerns. To ascertain the occurrence and genotypes of E. bieneusi and Encephalitozoon spp., we used nested PCR to amplify the internal transcribed spacer (ITS) gene and DNA sequencing to analyze 198 fecal samples from red pandas from 6 zoos in China. The total rate of microsporidial infection was 15.7% (31/198), with 12.1% (24/198), 1.0% (2/198), 2.0% (4/198) and 1.0% (2/198) for infection rate of E. bieneusi, Encephalitozoon cuniculi, Encephalitozoon intestinalis and Encephalitozoon hellem, respectively. One red panda was detected positive for a mixed infection (E. bieneusi and E. intestinalis). Red pandas living in semi-free conditions are more likely to be infected with microsporidia (χ2 = 6.212, df = 1, p < 0.05). Three known (SC02, D, and PL2) and one novel (SCR1) genotypes of E. bieneusi were found. Three genotypes of E. bieneusi (SC02, D, SCR1) were grouped into group 1 with public health importance, while genotype PL2 formed a separate clade associated with group 2. These findings suggest that red pandas may serve as a host reservoir for zoonotic microsporidia, potentially allowing transmission from red pandas to humans and other animals.

11.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37882672

RESUMEN

Forty-one isolates of Bisgaard taxon 6 obtained from guinea pigs, pandas, pigs and muskrat and isolates of taxon 10 from horses and horse bites in humans were subjected phenotypic characterization. Production of acid from (-)-d-mannitol, (-)-d-sorbitol and (+)-d-glycogen separated taxon 10 (positive) from taxon 6 (negative), while from two to 11 phenotypic characteristics separated taxa 6 and 10 from the 32 genera of Pasteurellaceae reported so far. Forty-four strains were genetically characterized. Sequencing of 16S rRNA genes documented a monophyletic relationship at the species level and the highest 16S rRNA gene sequence similarity of 95.6 % to other species was found between strain CCUG 15568T and the type strain of Mannheimia glucosida (CCUG 38457T). Digital DNA-DNA hybridization (dDDH) values predicted from whole genomic sequences between CCUG 15568T and other characterized strains of taxa 6 and 10 were 69.3-99.9 %. The average nucleotide identity values were higher than 95 % for all strains. The highest dDDH value of 29 % outside the taxa 6 and 10 group was obtained with the genome of the type strain of [Actinobacillus] succinogenes, indicating a separate taxonomic status at species level to taxa 6 and 10. The phylogenetic comparison of concatenated conserved protein sequences showed the unique position of the taxa investigated in the current study which qualified for the status of a new genus since the highest identity was found with Basfia with 79 %, well below the upper threshold between genera of 85 %. Based upon the low genetic similarity to other genera of the family Pasteurellaceae and a unique phenotype, we suggest that Bisgaard taxa 6 and 10 should be classified as Exercitatus varius gen. nov., sp. nov. The G+C of the type strain of Exercitatus varius, 8.5T (=CCUG 15568T=DSM 115565T), is 46.2 mol%, calculated from the whole genome.


Asunto(s)
Ácidos Grasos , Pasteurellaceae , Humanos , Animales , Cobayas , Caballos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química
12.
J Comp Pathol ; 205: 11-16, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37506667

RESUMEN

We report the pathological and molecular findings in an adult male Himalayan red panda (Ailurus fulgens fulgens) whose death was attributed to parenchymal brain haemorrhage (PBH) of the thalamus. Post-mortem examination revealed severe, acute PBH and intraventricular haemorrhage with major involvement of the thalamus, as well as scattered chronic microinfarctions. Vascular disease in the brain and other organs was suggestive of systemic hypertension. Histological lesions included arteriolar hyalinosis and varying degrees of arteriosclerosis, arterial tunica media hypertrophy and hyperplasia and infiltration of arterial walls by lipid-laden macrophages. Other relevant findings included marked myocardial fibrosis, lymphoplasmacytic tubulointerstitial nephritis, lymphoplasmacytic meningoencephalitis and chronic mitral valve degeneration. The changes in the cerebral vasculature were consistent with hypertensive encephalopathy and a cerebrovascular accident, specifically PBH, which has not been previously reported in this species. Additionally, polymerase chain reaction analysis for red panda amdoparvovirus (RPAV) was positive in the brain and kidneys. Preceded by hypertensive vascular changes and brain microinfarctions, sudden death in this animal likely resulted from fatal PBH with intraventricular haemorrhage. The clinicopathological role of RPAV infection is unknown in this case, although its contribution to the chronic renal disease is considered possible in the context of our current understanding of RPAV-associated pathology.


Asunto(s)
Ailuridae , Accidente Cerebrovascular , Masculino , Animales , Riñón , Accidente Cerebrovascular/veterinaria , Hemorragia/veterinaria
13.
Front Genet ; 14: 1198977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37470038

RESUMEN

The changes in the expression of genes related to digestion and metabolism may be various in different dietary mammals from juvenile to adult, especially, the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens), which were once carnivores but have shifted to being specialized bamboo eaters, are unique features of their changes are more unclear. To elucidate the changing patterns of gene expression related to digestion and metabolism from juvenile to adult in different dietary mammals, we performed transcriptome analysis of the liver or pancreas in giant and red pandas, herbivorous rabbits (Oryctolagus cuniculus) and macaques (Macaca mulatta), carnivorous ferrets (Mustela putorius furo), and omnivorous mice (Mus musculus) from juvenile to adult. During the transition from juvenile to adulthood, giant and red pandas, as well as rabbits and macaques, show significant upregulation of key genes for carbohydrate metabolism, such as starch hydrolysis and sucrose metabolism, and unsaturated fatty acid metabolism, such as linoleic acid, while there is no significant difference in the expression of key genes for fatty acid ß-oxidation. A large number of amino acid metabolism related genes were upregulated in adult rabbits and macaques compared to juveniles. While adult giant and red pandas mainly showed upregulation of key genes for arginine synthesis and downregulation of key genes for arginine and lysine degradation. In adult stages, mouse had significantly higher expression patterns in key genes for starch hydrolysis and sucrose metabolism, as well as lipid and protein metabolism. In contrast to general expectations, genes related to lipid, amino acid and protein metabolism were significantly higher expressed in adult group of ferrets, which may be related to their high metabolic levels. Our study elucidates the pattern of changes in the expression of genes related to digestion and metabolism from juvenile to adult in different dietary mammals, with giant and red pandas showing adaptations associated with specific nutritional limitations of bamboo.

14.
J Exp Zool A Ecol Integr Physiol ; 339(8): 755-766, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37395486

RESUMEN

Semi-arboreal mammals must routinely cope with the differing biomechanical challenges of terrestrial versus arboreal locomotion; however, it is not clear to what extent semi-arboreal mammals adjust footfall patterns when moving on different substrates. We opportunistically filmed quadrupedal locomotion (n = 132 walking strides) of semi-arboreal red pandas (Ailurus fulgens; n = 3) housed at Cleveland Metroparks Zoo and examined the effects of substrate type on spatiotemporal gait kinematic variables using linear mixed models. We further investigated the effects of substrate diameter and orientation on arboreal gait kinematics. Red pandas exclusively used lateral sequence (LS) gaits and most frequently utilized LS lateral couplet gaits across terrestrial and arboreal substrates. Red pandas moved significantly slower (p < 0.001), and controlling for speed, had significantly greater relative stride length (p < 0.001), mean stride duration (p = 0.002), mean duty factor (p < 0.001), and mean number of supporting limbs (p < 0.001) during arboreal locomotion. Arboreal strides on inclined substrates were characterized by significantly faster relative speeds and increased limb phase values compared with those horizontal and declined substrates. These kinematics adjustments help to reduce substrate oscillations thereby promoting stability on potentially precarious arboreal substrates. Red panda limb phase values are similar to those of (primarily terrestrial) Carnivora examined to date. Despite the similarity in footfall patterns during arboreal and terrestrial locomotion, flexibility in other kinematic variables is important for semi-arboreal red pandas that must navigate disparate biomechanical challenges inherent to arboreal versus terrestrial locomotion.


Asunto(s)
Ailuridae , Animales , Fenómenos Biomecánicos , Marcha/fisiología , Caminata/fisiología , Locomoción/fisiología
15.
Animals (Basel) ; 13(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37106861

RESUMEN

Animals in human care are affected by stressors that can ultimately reduce fitness. When reproduction is affected, endangered species conservation programs can be severely compromised. Thus, understanding factors related to stress and reproduction, and related hormones, is important to ensure captive breeding success. Red pandas (Ailurus fulgens) are endangered, and populations in the wild are threatened with extinction. A global captive breeding program has been launched to conserve the species with the goal of reintroduction. However, there is little information on how stressors impact physiological aspects of the species. This study measured fecal glucocorticoid (fGCM), progestagen (fPM), and androgen (fAM) metabolite concentrations in 12 female and 8 male red pandas at 3 zoos in India to determine predictors of adrenal and gonadal steroid activity, and the influence of fGCM on reproduction. Based on the generalized linear mixed model (GLMM), fGCM concentrations were positively correlated with the number of visitors, number of nests and enclosure areas, and negatively related to frequency of feedings, log density, and social time, while fPM concentrations were negatively associated with enclosure areas. A confounder for enclosure areas and number of nests was the fact that these spaces were relatively barren, with limited hiding spaces, compared to the smaller enclosures. By contrast, no significant relationships were found for fAM, perhaps due to the smaller sample size. A negative relationship between fGCM and fPM was observed, indicating increasing adrenal hormones may decrease reproductive function among female red pandas. Results suggest that zoo management should consider increasing feeding frequency, providing larger enclosures with more enrichment and more nests in larger spaces, and regulating visitor numbers to support good welfare and potentially improve reproductive fitness of red pandas in captivity.

16.
Int J Parasitol Parasites Wildl ; 20: 31-38, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36619891

RESUMEN

Lice are six-legged, wingless, insect parasites of mammals and birds, and include two main functional groups: blood-sucking lice and chewing lice. However, it is still not clear whether the Chinese red panda Ailurus styani is infested with the parasitic louse. In the present study, we describe a new genus and a species of chewing louse, Pancola ailurus (Phthiraptera: Trichodectidae) based on morphological and molecular datasets. The morphological features showed that Pancola is closer to Paratrichodectes. The genetic divergence of cox1 and 12S rRNA among the Pancola ailurus n. sp. and other Trichodectidae lice was 29.7 - 34.6% and 38.9 - 43.6%, respectively. Phylogenetic analyses based on the available mitochondrial gene sequences showed that P. ailurus n. sp. is more closely related to Trichodectes canis and Geomydoecus aurei than to Felicola subrostratus and together nested within the family Trichodectidae. This study is the first record of parasitic lice from the endangered Chinese red panda A. styani and highlights the importance of integrating morphological and molecular datasets for the identification and discrimination of new louse species.

17.
BMC Genomics ; 24(1): 23, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647013

RESUMEN

BACKGROUND: It is inevitable to change the function or expression of genes during the environmental adaption of species. Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to Carnivora and have developed similar adaptations to the same dietary switch to bamboos at the morphological and genomic levels. However, the genetic adaptation at the gene expression level is unclear. Therefore, we aimed to examine the gene expression patterns of giant and red panda convergent specialized bamboo-diets. We examined differences in liver and pancreas transcriptomes between the two panda species and other non-herbivorous species. RESULTS: The clustering and PCA plots suggested that the specialized bamboo diet may drive similar expression shifts in these two species of pandas. Therefore, we focused on shared liver and pancreas DEGs (differentially expressed genes) in the giant and red panda relative to other non-herbivorous species. Genetic convergence occurred at multiple levels spanning carbohydrate metabolism, lipid metabolism, and lysine degradation. The shared adaptive convergence DEGs in both organs probably be an evolutionary response to the high carbohydrate, low lipid and lysine bamboo diet. Convergent expression of those nutrient metabolism-related genes in both pandas was an intricate process and subjected to multi-level regulation, including DNA methylation and transcription factor. A large number of lysine degradation and lipid metabolism related genes were hypermethylated in promoter regions in the red panda. Most genes related to carbohydrate metabolism had reduced DNA methylation with increased mRNA expression in giant pandas. Unlike the red panda, the core gene of the lysine degradation pathway (AASS) doesn't exhibit hypermethylation modification in the giant panda, and dual-luciferase reporter assay showed that transcription factor, NR3C1, functions as a transcriptional activator in AASS transcription through the binding to AASS promoter region. CONCLUSIONS: Our results revealed the adaptive expressions and regulations of the metabolism-related genes responding to the unique nutrients in bamboo food and provided data accumulation and research hints for the future revelation of complex mechanism of two pandas underlying convergent adaptation to a specialized bamboo diet.


Asunto(s)
Ailuridae , Dieta , Ursidae , Animales , Dieta/veterinaria , Expresión Génica , Lisina/metabolismo , Ursidae/genética , Ursidae/metabolismo , Ailuridae/genética , Ailuridae/metabolismo
18.
Zoo Biol ; 42(1): 75-85, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35815715

RESUMEN

Postoccupancy evaluation (POE) was used to assess newly constructed zoo exhibits from the perspective of three user groups: zoo staff, zoo visitors, and the animals. Staff represents a generally understudied user group in zoo-based POEs. We asked staff to rate the animals' space, the visitors' space, and the staff's space at previous and new exhibits. We also compared zoo visitors' ratings of the animals' behavior and environments, overall exhibit impressions, and the time visitors spent viewing previous and new exhibits. Lastly, we compared activity and space use of a Komodo dragon (Varanus komodoensis), two red pandas (Ailurus fulgens), and one rhinoceros (Rhinoceros unicornis) in their previous and new exhibits. Staff rated animal, visitor, and staff areas higher at the new exhibits compared to the previous exhibits. Visitors also rated several factors higher and spent more time at the new exhibits. The most naturalistic exhibit received the most favorable ratings in all categories and animal activity increased visitor stay time. We found that red pandas were less active in their new exhibit, and the Komodo dragon and rhino showed no difference in activity. The red pandas and the Komodo dragon used more available space in their new exhibits; however, we recommend using Electivity index to examine resource preferences for these species, whose enclosure use has been less studied than large mammals. We emphasize the importance of including staff in zoo-based POE, make other recommendations for future POE studies, and discuss various factors that could have influenced our results.


Asunto(s)
Animales de Zoológico , Lagartos , Animales , Conducta Animal , Mamíferos
19.
Genes (Basel) ; 13(8)2022 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-36011357

RESUMEN

Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to the order Carnivora, but have changed their dietary habits to eating bamboo exclusively. The convergent evolution characteristics of their morphology, genome and gut flora have been found in the two pandas. However, the research on the convergent adaptation of their digestion and metabolism to the bamboo diet, mediated by the dietary shift of the two pandas at the gene-expression and epigenetic regulation levels, is still lacking. We therefore used RNA sequencing among five species (two pandas and three non-herbivore mammals) and bisulfite sequencing among three species (two pandas and a carnivore ferret) to sequence key digestion and metabolism tissues (stomach and small intestine). Our results provide evidence that the convergent differentially expressed genes (related to carbohydrate utilization, bile secretion, Lys and Arg metabolism, vitamin B12 utilization and cyanide detoxification) of the two pandas are adaptive responses to the bamboo diet containing low lipids, low Lys and Arg, low vitamin B12 and high cyanide. We also profiled the genome-wide methylome maps of giant panda, red panda and ferret, and the results indicated that the promoter methylation of the two pandas may regulate digestive and metabolic genes to adapt to sudden environmental changes, and then, transmit genetic information to future generations to evolve into bamboo eaters. Taken together, our study provides new insights into the molecular mechanisms of the dietary shift and the adaptation to a strict bamboo diet in both pandas using comparative transcriptomics and methylomics.


Asunto(s)
Ailuridae , Carnívoros , Ursidae , Ailuridae/genética , Ailuridae/metabolismo , Animales , Carnívoros/genética , Cianuros/metabolismo , Dieta , Epigénesis Genética , Hurones/genética , Hurones/metabolismo , Transcriptoma/genética , Ursidae/genética , Vitamina B 12/metabolismo
20.
PeerJ ; 10: e13743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898935

RESUMEN

The red panda is an endangered forest species distributed on the edge of the Qinghai Tibet Plateau. The species has been conserved in ex-situ in many countries and its survival is threatened by many diseases. Its immune system is vulnerable to age-associated alterations, which accumulate and result in a progressive deterioration that leads to an increased incidence of diseases. We identified 2,219 differentially expressed genes (DEGs) between geriatric (11-16 years) and adult individuals (4-8 years), and 1690 DEGs between adults and juveniles (1 year). The gene expression and functional annotation results showed that the innate immunity of red pandas increases significantly in geriatric individuals, whereas its change remains unclear when comparing adults and juveniles. We found that the adaptive immunity of red pandas first increased and then decreased with age. We identified CXCR3, BLNK, and CCR4 as the hub genes in the age-related protein-protein interaction network, which showed their central role in age-related immune changes. Many DNA repair genes were down-regulated in geriatric red pandas, suggesting that the DNA repair ability of the blood tissue in geriatric red pandas is significantly reduced. The significantly up-regulated TLR5 in geriatric individuals also suggests the possibility of enhancing the vaccination immune response by incorporating flagellin, which could be used to address decreased vaccine responses caused by age-related declines in immune system function. This work provides an insight into gene expression changes associated with aging and paves the way for effective disease prevention and treatment strategies for red pandas in the future.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Animales , Anciano , Transcriptoma/genética , Sistema Inmunológico , Pruebas Hematológicas , Especies en Peligro de Extinción , Envejecimiento/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA