Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.341
Filtrar
1.
Semina cienc. biol. saude ; 45(2): 113-126, jul./dez. 2024. Tab, Ilus
Artículo en Portugués | LILACS | ID: biblio-1513051

RESUMEN

A síndrome respiratória aguda grave (SRAG) é caracterizada por sintomas de febre alta, tosse e dispneia, e, na maioria dos casos, relacionada a uma quantidade reduzida de agentes infecciosos. O objetivo foi avaliar a prevalência dos vírus respiratórios Influenza A (FluA), vírus sincicial respiratório (RSV) e do novo coronavírus (SARS-CoV-2) em pacientes com internação hospitalar por SRAG. Estudo transversal, com pacientes em internação hospitalar com SRAG entre novembro de 2021 e maio de 2022. Dados sociodemográficos e clínicos e amostras da nasofaringe foram coletados/as, as quais foram submetidas à extração de RNA e testadas quanto à positividade para Influenza A, RSV e SARS-CoV-2 por meio da técnica de PCR em tempo real pelo método SYBR Green. Foram incluídos 42 pacientes, sendo 59,5% do sexo feminino, 57,1% idosos, 54,8% com ensino fundamental. A maior parte dos pacientes reportou hábito tabagista prévio ou atual (54,8%), não etilista (73,8%) e 83,3% deles apresentavam alguma comorbidade, sendo hipertensão arterial sistêmica e diabetes mellitus tipo 2 as mais prevalentes. Um total de 10,5% dos pacientes testou positivo para FluA, nenhuma amostra positiva para RSV e 76,3% positivos para SARS-CoV-2. Na população estudada, SRAG com agravo hospitalar foi observado em maior proporção, em mulheres, idosos e pessoas com comorbidades, embora sem significância estatística, sendo o novo coronavírus o agente etiológico mais relacionado, o que evidencia a patogenicidade desse agente e suas consequências ainda são evidentes após quase 2 anos de período pandêmico.


Severe acute respiratory syndrome (SARS) is characterized by symptoms of high fever, cough and dyspnea, and is in most cases related to a reduced amount of infectious agents. The objective was to assess the prevalence of respiratory viruses Influenza A (FluA), respiratory syncytial virus (RSV) and the new coronavirus (SARS-CoV-2) in patients hospitalized for SARS. Cross-sectional study, with patients hospitalized with SARS between November 2021 and May 2022. Sociodemographic and clinical data and nasopharyngeal samples were collected, which were subjected to RNA extraction and tested for positivity for Influenza A, RSV and SARS-CoV-2 using the real-time PCR technique using the SYBR Green method. 42 patients were included, 59.5% female, 57.1% elderly, 54.8% with primary education. Most patients reported previous or current smoking habits (54.8%), non-drinkers (73.8) and 83.3% of them had some comorbidity, with systemic arterial hypertension and type 2 diabetes mellitus being the most prevalent. A total of 10.5% of patients tested positive for FluA, no samples positive for RSV, and 76.3% positive for SARS-CoV-2. In the studied population, SARS with hospital injury was observed more frequently in women and the elderly, with associated comorbidities, with the new coronavirus being the most related etiological agent, which shows, although not statistically significant, that the pathogenicity of this agent and its consequences are still evident after almost 2 years of period pandemic.


Asunto(s)
Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad
2.
ACS Nano ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255458

RESUMEN

The availability of high-frequency, real-time measurements of the concentrations of specific metabolites in cell culture systems will enable a deeper understanding of cellular metabolism and facilitate the application of good laboratory practice standards in cell culture protocols. However, currently available approaches to this end either are constrained to single-time-point and single-parameter measurements or are limited in the range of detectable analytes. Electrochemical aptamer-based (EAB) biosensors have demonstrated utility in real-time monitoring of analytes in vivo in blood and tissues. Here, we characterize a pH-sensing capability of EAB sensors that is independent of the specific target analyte of the aptamer sequence. We applied this dual-purpose EAB to the continuous measurement of pH and phenylalanine in several in vitro cell culture settings. The miniature EAB sensor that we developed exhibits rapid response times, good stability, high repeatability, and biologically relevant sensitivity. We also developed and characterized a leak-free reference electrode that mitigates the potential cytotoxic effects of silver ions released from conventional reference electrodes. Using the resulting dual-purpose sensor, we performed hourly measurements of pH and phenylalanine concentrations in the medium superfusing cultured epithelial tumor cell lines (A549, MDA-MB-23) and a human fibroblast cell line (MRC-5) for periods of up to 72 h. Our scalable technology may be multiplexed for high-throughput monitoring of pH and multiple analytes in support of the broad metabolic qualification of microphysiological systems.

3.
Network ; : 1-28, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257285

RESUMEN

Public safety is a critical concern, typically addressed through security checks at entrances of public places, involving trained officers or X-ray scanning machines to detect prohibited items. However, many places like hospitals, schools, and event centres lack such resources, risking security breaches. Even with X-ray scanners or manual checks, gaps can be exploited by individuals with malicious intent, posing significant security risks. Additionally, traditional methods, relying on manual inspections and conventional image processing techniques, are often inefficient and prone to high error rates. To mitigate these risks, we propose a real-time detection model - EnhanceNet using a customized Scale-Enhanced Pooling Network (SEP-Net) integrated into the YOLOv4. The innovative SEP-Net enhances feature representation and localization accuracy, significantly contributing to the model's efficacy in detecting prohibited items. We annotated a custom dataset of nine classes and evaluated our models using different input sizes (608 and 416). The 608 input size achieved a mean Average Precision (mAP) of 74.10% with a detection speed of 22.3 Frames per Second (FPS). The 416 input size showed superior performance, achieving a mAP of 76.75% and a detection speed of 27.1 FPS. These demonstrate that our models are accurate and efficient, making them suitable for real-time applications.

4.
Lab Anim ; : 236772241257132, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257337

RESUMEN

This study aimed to investigate the presence of murine astrovirus (MuAstV) in Brazil. Fecal samples from mice belonging to four Brazilian animal facilities were collected and tested for MuAstV using real-time polymerase chain reaction. Of the 162 samples tested, 38 (23.5%) were positive for MuAstV, 33 (91.7%) of which came from specific-pathogen free colonies. Although most of the samples were obtained from asymptomatic animals, three mice presented diarrheal symptoms, and MuAstV was the only agent detected by molecular assay. Phylogenetic analysis revealed similarities between the MuAstV strains from this study and prototypes from the USA. MuAstV's high prevalence, environmental stability, genetic diversity and potential for persistent infections must be considered when evaluating health monitoring programs for laboratory rodents.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39258770

RESUMEN

Objective: This meta-analysis aimed to compare the effect of the real-time continuous glucose monitoring (rt-CGM) and flash glucose monitoring (FGM) on glycemic control in adults with type 1 diabetes mellitus (T1DM). Methods: A systematic literature search of all relevant studies comparing the clinical effectiveness of rt-CGM and FGM in adults with T1DM on Cochrane Library, PubMed, Embase, Web of Science, and Scopus from January 2015 to June 2023 was performed. The primary endpoints were glycated hemoglobin (HbA1c) and TIR (time in range). Secondary endpoints included time below range [TBR (<3.9 mmol/L) and (<3.0 mmol/L)], time above range [TAR (>10.0 mmol/L) and (>13.9 mmol/L)], mean glucose, and glycemic variability (GV) [standard deviations (SD) and coefficient of variation (CV)]. Results: Six studies with 1516 TIDM patients, including three randomized controlled trials and three observational studies, were enrolled in this meta-analysis. Compared to FGM, rt-CGM led to greater glycemic control, represented by higher TIR (%, 3.9 ∼ 10 mmol/L) (SMD = 0.59, 95%CI: 0.37 ∼ 0.81, p < 0.001), decreased TBR (%, <3.9 mmol/L) (SMD = -1.45, 95%CI: -2.33 ∼ -0.57, p = 0.001), decreased TAR [(%, >10.0 mmol/L) (SMD = -0.38, 95%CI: -0.71 ∼ -0.04, p = 0.03) and (%, >13.9 mmol/L) (SMD = -0.42, 95%CI: -0.79 ∼ -0.04, p = 0.03), respectively], lower mean glucose (SMD = -0.18, 95%CI: -0.31 ∼ -0.06, p = 0.003), decreased SD (SMD = -0.70, 95%CI: -1.09 ∼ -0.31, p < 0.001), and decreased CV (SMD = -0.76, 95%CI: -1.05 ∼ -0.47, p < 0.001). However, there was no difference in lowering HbA1c and TBR (%, <3.0 mmol/L) between groups. Conclusion: The rt-CGM outperformed FGM in improving several key CGM metrics among adults with T1DM, but there is no significant difference in HbA1c and TBR (<3.0 mmol/L).

6.
Artículo en Inglés | MEDLINE | ID: mdl-39259482

RESUMEN

PURPOSE: This study examines, with clinical end users, the features of a visualization system in transmitting real-time patient data from the ambulance to the emergency trauma room (ETR) to determine if the real-time data provides the basis for more informed and timely interventions in the ETR before and after patient arrival. METHODS: We conducted a qualitative in-depth interview study with 32 physicians in six German and Swiss hospitals. A visualization system was developed as prototype to display the transfer of patient data, and it serves as a basis for evaluation by the participating physicians. RESULTS: The prototype demonstrated the potential benefits of improving workflow within the ETR by providing critical patient information in real-time. Physicians highlighted the importance of features such as the ABCDE scheme and vital signs that directly impact patient care. Configurable and mobile versions of the prototype were suggested to meet the specific needs of each clinic or specialist, allowing for the transfer of only essential information. CONCLUSION: The results highlight on the one hand the potential need for adaptable interfaces in medical communication technologies that balance efficiency with minimizing additional workload for emergency medical services and show that the use of pre-notification systems in communication between ambulance and hospital can be supportive. Further research is recommended to assess practical application and support in clinical practice, including a re-evaluation of the enhanced prototype by professionals.

7.
Front Vet Sci ; 11: 1421427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229598

RESUMEN

Introduction: Research quality can be improved with reliable and reproducible experimental results when animal experiments are conducted using laboratory animals with guaranteed microbiological and genetic quality through health monitoring. Therefore, health monitoring requires the rapid and accurate diagnosis of infectious diseases in laboratory animals. Methods: This study presents a performance evaluation of a commercially available multiplex real-time PCR (mRT-PCR) assay for the rapid detection of 12 infectious pathogens (Set 1: Sendai virus [SeV, formally murine respirovirus], Mycoplasma spp., Rodentibacter pneumotropicus, and Rodentibacter heylii; Set 2: Helicobacter spp., Murine norovirus [MNV], Murine hepatitis virus [MHV], and Salmonella spp.; Set 3: Staphylococcus aureus, Streptobacillus moniliformis, Corynebacterium kutscheri, and Pseudomonas aeruginosa). To evaluate the efficacy of the mRT-PCR assay, 102 clinical samples encompassing fecal and cecal specimens were analyzed. The resulting data were then compared with the findings from sequence analysis for validation. Results: The assay's detection limit ranged from 1 to 100 copies per reaction. Specificity testing involving various viruses and bacteria indicated no cross-reactivity between strains. Additionally, the assay exhibited good reproducibility, with mean coefficients of variation for inter- and intra assay variation below 3%. The overall positive rate was 52.9% (n = 54), with the mRT-PCR assay findings matching sequence analysis results (κ = 1). MHV (n = 29, 28.4%) was the most prevalent pathogen, followed by Helicobacter spp. (n = 28, 27.5%), R. heylii (n = 18, 17.6%), Mycoplasma spp. (n = 14, 13.7%), MNV (n = 12, 11.8%), S. aureus (n = 9, 8.8%), P. aeruginosa (n = 4, 3.9%), and R. pneumotropicus (n = 1, 0.9%). Discussion: This assay offers a rapid turnaround time of 100 min, including 30 min for DNA preparation and 70 min for target DNA/RNA amplification. It ensures accuracy, minimizing false positives or negatives, making it a convenient tool for the simultaneous detection of infectious diseases in many samples. Overall, the propose­d assay holds promise for the effective detection of the most important pathogens in laboratory animal health monitoring.

8.
Water Res ; 266: 122318, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39236501

RESUMEN

As the size of water distribution network (WDN) models continues to grow, developing and applying real-time models or digital twins to simulate hydraulic behaviors in large-scale WDNs is becoming increasingly challenging. The long response time incurred when performing multiple hydraulic simulations in large-scale WDNs can no longer meet the current requirements for the efficient and real-time application of WDN models. To address this issue, there is a rising interest in accelerating hydraulic calculations in WDN models by integrating new model structures with abundant computational resources and mature parallel computing frameworks. This paper presents a novel and efficient framework for steady-state hydraulic calculations, comprising a joint topology-calculation decomposition method that decomposes the hydraulic calculation process and a high-performance decomposed gradient algorithm that integrates with parallel computation. Tests in four WDNs of different sizes with 8 to 85,118 nodes demonstrate that the framework maintains high calculation accuracy consistent with EPANET and can reduce calculation time by up to 51.93 % compared to EPANET in the largest WDN model. Further investigation found that factors affecting the acceleration include the decomposition level, consistency of sub-model sizes and sub-model structures. The framework aims to help develop rapid-responding models for large-scale WDNs and improve their efficiency in integrating multiple application algorithms, thereby supporting the water supply industry in achieving more adaptive and intelligent management of large-scale WDNs.

9.
Sci Rep ; 14(1): 20825, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242658

RESUMEN

Remdesivir therapy has been declared as efficient in the early stages of Covid-19. Of the 339 patients (males 55.8%, age 71(59;77) years) with a detectable viral load, 140 were treated with remdesivir (of those 103 in the ICU and 57 immunosuppressed) and retrospectively compared with 199 patients (of those 82 in the ICU and 28 immunosuppressed) who were denied therapy due to advanced Covid-19. The viral load was estimated by detecting nucleocapsid antigen in serum (n = 155, median 217(28;1524)pg/ml), antigen in sputum (n = 18, COI 18(4.6;32)), nasopharyngeal antigen (n = 44, COI 17(8;35)) and the real-time PCR (n = 122, Ct 21(18;27)). After adjustment for confounders, patients on remdesivir had better 12-month survival (HR 0.66 (0.44;0.98), p = 0.039), particularly when admitted to the ICU (HR 0.49 (0.29;0.81), p = 0.006). For the immunocompromised patients, the difference did not reach statistical significance (HR 0.55 (0.18;1.69), p = 0.3). The other most significant confounders were age, ICU admission, mechanical ventilation, leukocyte/lymphocyte ratio, admission creatinine and immunosuppression. The impact of monoclonal antibodies or previous vaccinations was not significant. Despite frequent immune suppression including haemato-oncology diseases, lymphopenia, and higher inflammatory markers in the remdesivir group, the results support remdesivir administration with respect to widely available estimates of viral load in patients with high illness severity.


Asunto(s)
Adenosina Monofosfato , Alanina , Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2 , Carga Viral , Humanos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/uso terapéutico , Masculino , Femenino , Carga Viral/efectos de los fármacos , Anciano , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Persona de Mediana Edad , COVID-19/virología , COVID-19/mortalidad , Antivirales/uso terapéutico , Estudios Retrospectivos , Resultado del Tratamiento , Cuidados Críticos , Unidades de Cuidados Intensivos , Índice de Severidad de la Enfermedad
10.
Biosens Bioelectron ; 267: 116757, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250871

RESUMEN

Plant signaling molecules can be divided into plant messenger signaling molecules (such as calcium ions, hydrogen peroxide, Nitric oxide) and plant hormone signaling molecules (such as auxin (mainly indole-3-acetic acid or IAA), salicylic acid, abscisic acid, cytokinin, jasmonic acid or methyl jasmonate, gibberellins, brassinosteroids, strigolactone, and ethylene), which play crucial roles in regulating plant growth and development, and response to the environment. Due to the important roles of the plant signaling molecules in the plants, many methods were developed to detect them. The development of in-situ and real-time detection of plant signaling molecules and field-deployable sensors will be a key breakthrough for botanical research and agricultural technology. Electrochemical methods provide convenient methods for in-situ and real-time detection of plant signaling molecules in plants because of their easy operation, high sensitivity, and high selectivity. This article comprehensively reviews the research on electrochemical detection of plant signaling molecules reported in the past decade, which summarizes the various types electrodes of electrochemical sensors and the applications of multiple nanomaterials to enhance electrode detection selectivity and sensitivity. This review also provides examples to introduce the current research trends in electrochemical detection, and highlights the applicability and innovation of electrochemical sensors such as miniaturization, non-invasive, long-term stability, integration, automation, and intelligence in the future. In all, the electrochemical sensors can realize in-situ, real-time and intelligent acquisition of dynamic changes in plant signaling molecules in plants, which is of great significance for promoting basic research in botany and the development of intelligent agriculture.

11.
Sleep Breath ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264533

RESUMEN

PURPOSE: The high prevalence of non-alcoholic fatty liver disease (NAFLD) in obese children with obstructive sleep apnoea (OSA) calls for early non-invasive screening. The aim of this study was to use ultrasonographic liver echogenicity and elasticity to evaluate the early stages of liver injury in obese children with OSA. METHODS: Fifty-five obese children with OSA aged 12 to 15 years were included. The control group (n = 56) consisted of healthy, non-obese children. All children underwent ultrasound examination to assess liver echogenicity using the hepatorenal index (HRI) and real-time elastography to determine the liver fibrosis index (LFI). Polysomnographic parameters, sonographic values, and clinical-biochemical assessment were statistically analysed according to OSA and its severity. Subgroup 1 was obese children with OSA and AHI < 5 and subgroup 2 was obese children with OSA and AHI ≥ 5. RESULTS: Higher average values of HRI and LFI were recorded in the group of obese paediatric patients with OSA (mean age ± SD, 14.1 ± 2.2 year; 53% male; BMI z-score, 2.6 ± 0.35) compared to the control group (1.37 ± 0.19 vs. 1.12 ± 0.07, p < 0.001 and 1.82 ± 0.31 vs. 1.02 ± 0.27, p < 0.001). A significantly higher LFI was recorded in subgroup 2 compared to subgroup 1 (2.0 ± 0.3 vs. 1.6 ± 0.2, p < 0.001) while laboratory parameters and HRI (1.4 ± 0.2 vs. 1.4 ± 0.2, p = 0.630) did not change significantly. A strong positive correlation was found between the severity of OSA and the LFI (r = 0.454; p < 0.01). CONCLUSIONS: These findings suggest that ultrasound elastography is a useful non-invasive screening test for OSA-related steatohepatitis in obese adolescents, but other clinical studies are needed to confirm this result.

12.
J Virol Methods ; 330: 115032, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251074

RESUMEN

Nuomin virus (NOMV), an emerging tick-borne virus (TBVs) identified in 2020, has been associated with fever, headache, and potential liver dysfunction in infected individuals. This study presents a novel TaqMan real-time quantitative PCR method designed for the rapid, sensitive, and specific detection of NOMV, facilitating early diagnosis. Utilizing Beacon Designer software 8.0, we optimized the PCR assay including the development of primers and probes to precisely target the conserved region of the NOMV genome, followed by optimization of primer and probe concentrations and annealing temperature. The resulting assay demonstrated robust performance, with standard curve represented by the equation y=-3.29x+39.42, a high correlation coefficient (R2 = 0.995) and an efficiency 99.53 %. Importantly, the method exhibited exceptional specificity, which did not yield cross-reacting signals from other TBVs, including Songling virus (SGLV), Beiji virus (BJNV), tick-borne encephalitis virus (TBEV), Yezo virus (YEZV), Alongshan virus (ALSV), and severe fever with thrombocytopenia syndrome bunyavirus (SFTSV). The assay's detection limit was remarkably low, reaching 10 copies/µL, representing a 100-fold increase compared to semi-nested RT-PCR. Additionally, it demonstrated excellent repeatability, with coefficients of variation for intra- and inter-group tests consistently below 3 %. Clinical evaluations confirmed the assay's superior performance, highlighting its high specificity, sensitivity, and reproducibility for NOMV detection. In conclusion, the method developed in this study provides a valuable tool to support timely management of NOMV infections, with significant implications for clinical practice.

14.
Anal Chim Acta ; 1328: 343177, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39266196

RESUMEN

BACKGROUND: The robustness and sensitivity of the surface-enhanced Raman spectroscopy (SERS) technique heavily relies on the development of SERS active materials. A hybrid of semiconductor and plasmonic metals is highly effective as a SERS substrate, which enables the trace level detection of various organic pollutants. RESULTS: This approach demonstrates the photodeposition of plasmonic gold nanoparticles (Au-NPs) on the surface of semiconductor-zinc sulfide nanoflowers (ZnS NFs), grown via the hydrothermal route. The synergistic contribution of the charge-transfer phenomenon and localized surface plasmon resonance of the Au-NPs/ZnS NFs makes it an ideal SERS substrate for the detection of organic pollutants, toluidine blue (TB). The proposed material has a high SERS enhancement factor (109), low limit of detection (10-11 M), good reproducibility, selectivity and strong anti-interference ability. Furthermore, the practicability of the Au-NPs/ZnS NFs is explored in real-time water samples, which are obtained with the satisfactory recovery rates. Additionally, the UVC light illumination on the Au-NPs/ZnS NFs has efficiently degraded TB within a time period of 150 min. SIGNIFICANCE AND NOVELTY: These finding demonstrate the significance of the proposed Au-NPs/ZnS NFs for SERS based detection and degradation of organic pollutants in real-time samples, highlighting their potential in monitoring and treating water pollutants in wastewater.

15.
Phys Med ; 125: 104507, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39217787

RESUMEN

PURPOSE: To demonstrate the possibility of using a lower imaging rate while maintaining acceptable accuracy by applying motion prediction to minimize the imaging dose in real-time image-guided radiation therapy. METHODS: Time-series of three-dimensional internal marker positions obtained from 98 patients in liver stereotactic body radiation therapy were used to train and test the long-short-term memory (LSTM) network. For real-time imaging, the root mean squared error (RMSE) of the prediction on three-dimensional marker position made by LSTM, the residual motion of the target under respiratory-gated irradiation, and irradiation efficiency were evaluated. In the evaluation of the residual motion, the system-specific latency was assumed to be 100 ms. RESULTS: Except for outliers in the superior-inferior (SI) direction, the median/maximum values of the RMSE for imaging rates of 7.5, 5.0, and 2.5 frames per second (fps) were 0.8/1.3, 0.9/1.6, and 1.2/2.4 mm, respectively. The median/maximum residual motion in the SI direction at an imaging rate of 15.0 fps without prediction of the marker position, which is a typical clinical setting, was 2.3/3.6 mm. For rates of 7.5, 5.0, and 2.5 fps with prediction, the corresponding values were 2.0/2.6, 2.2/3.3, and 2.4/3.9 mm, respectively. There was no significant difference between the irradiation efficiency with and that without prediction of the marker position. The geometrical accuracy at lower frame rates with prediction applied was superior or comparable to that at 15 fps without prediction. In comparison with the current clinical setting for real-time image-guided radiation therapy, which uses an imaging rate of 15.0 fps without prediction, it may be possible to reduce the imaging dose by half or more. CONCLUSIONS: Motion prediction can effectively lower the frame rate and minimize the imaging dose in real-time image-guided radiation therapy.


Asunto(s)
Movimiento , Radiocirugia , Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Radiocirugia/métodos , Dosis de Radiación , Factores de Tiempo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagen , Dosificación Radioterapéutica , Redes Neurales de la Computación , Memoria a Corto Plazo/efectos de la radiación
16.
J Virol Methods ; 330: 115026, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233060

RESUMEN

Due to shared routes of transmission, including sexual contact and vertical transmission, HIV-HBV co-infection is common, particularly in sub-Saharan Africa. Measurement of viral load (VL), for both HIV and HBV, plays a critical role for determining their infectious phase and monitoring response to antiviral therapy. Implementation of viral load testing in clinical settings is a significant challenge in resource-limited countries, notably because of cost and availability issues. We designed HIV and HBV primers for conserved regions of the HIV and HBV genomes that were specifically adapted to viral strains circulating in West Africa that are HIV-1 subtype CRF02AG and HBV genotype E. We first validated two monoplex qPCR assays for individual quantification and, then developed a multiplex qPCR for simultaneous quantification of both viruses. HIV RNA and HBV DNA amplification was performed in a single tube using a one-step reverse transcription-PCR reaction with primers and probes targeting both viruses. Performance characteristics such as the quantification range, sensitivity, and specificity of this multiplex qPCR assay were compared to reference qPCR tests for both HIV and HBV viral load quantification. The multiplex assay was validated using clinical samples from co- or mono-infected patients and gave comparable viral load quantification to the HIV and HBV reference test respectively. The multiplex qPCR demonstrated an overall sensitivity of 71.25 % [68.16-74.3] for HBV and 82 % [78.09-85.90] for HIV and an overall specificity of 100 % [94.95-100] for both viruses. Although the overall sensitivities of the HIV and HBV assays were lower than the commercial comparator assays, the sensitivity in the clinical decision range of >1000 copies/mL for HIV was 80 % [71.26-88.73] and >1000 IU/mL for HBV was 100 % [95.51-100] which indicates the test results can be used to guide treatment decisions. This in-house developed multiplex qPCR assay represents a useful diagnostic tool as it can be performed on affordable "open" real-time PCR platforms currently used for HIV or SARS-Cov-2 infection surveillance in Mali.

17.
BMC Res Notes ; 17(1): 240, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223570

RESUMEN

OBJECTIVE: This study validates a direct multiplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assay which was previously established for enabling rapid and simultaneous detection of African swine fever (ASF) virus (ASFV) and classical swine fever virus. The assay eliminates the need for viral nucleic acid purification using a buffer system for crude extraction and an impurity-tolerant enzyme. However, the assay had not yet been validated using field samples of ASFV-infected pigs. Therefore, to address this gap, we tested 101 samples collected from pigs in Vietnam during 2018 and 2021 for validation. RESULTS: The rRT-PCR assay demonstrated a diagnostic sensitivity of 98.8% and a specificity of 100%. Remarkably, crude samples yielded results comparable to those of purified samples, indicating the feasibility of using crude samples without compromising accuracy in ASFV detection. Our findings emphasize the effectiveness of the rRT-PCR assay for the prompt and accurate diagnosis of both swine fever viruses, which is essential for effective disease prevention and control in swine populations.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Porcinos , Vietnam , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas
18.
J Infect Dis ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248312

RESUMEN

The causes of diarrhea after ten years of rotavirus vaccination in Rwanda were investigated in 496 children with and 298 without diarrhea using a real-time PCR. Rotavirus was detected in 11% of children with diarrhea (OR 2.48, P=0.002). Comparison of population attributable fractions (PAF) show that Shigella (PAF=11%) and ETEC-eltB (PAF=12%) have replaced rotavirus as the main causative agents. The PAF for rotavirus had declined from 41% pre-vaccination to 6.5%, indicating that rotavirus has become one among several similarly important causes of childhood diarrhea in Rwanda. A rotavirus genotype shift to G3P[8] points at the importance of continued genotype surveillance.

19.
Int J Numer Method Biomed Eng ; : e3864, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250194

RESUMEN

Heat transfer in the human eyeball, a complex organ, is significantly influenced by various pathophysiological and external parameters. Particularly, heat transfer critically affects fluid behavior within the eye and ocular drug delivery processes. Overcoming the challenges of experimental analysis, this study introduces a comprehensive three-dimensional mathematical and computational model to simulate the heat transfer in a realistic geometry. Our work includes an extensive sensitivity analysis to address uncertainties and delineate the impact of different variables on heat distribution in ocular tissues. To manage the model's complexity, we employed a very fast model reduction technique with certified sharp error bounds, ensuring computational efficiency without compromising accuracy. Our results demonstrate remarkable consistency with experimental observations and align closely with existing numerical findings in the literature. Crucially, our findings underscore the significant role of blood flow and environmental conditions, particularly in the eye's internal tissues. Clinically, this model offers a promising tool for examining the temperature-related effects of various therapeutic interventions on the eye. Such insights are invaluable for optimizing treatment strategies in ophthalmology.

20.
Biomed Res Int ; 2024: 3573796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263420

RESUMEN

Background: The precision of postoperative prostate cancer radiotherapy is significantly influenced by setup errors and alterations in bladder morphology. Utilizing daily cone beam computed tomography (CBCT) imaging allows for the correction of setup errors. However, this naturally leads to the question of the issue of peripheral dose and workload. Thus, a zero-dose, noninvasive technique to reproduce the bladder volume and improve patient setup accuracy was needed. Purpose: The aim of this study is to investigate if the setup method by combining Optical Surface Management System (OSMS) and BladderScan can improve the accuracy of setup and accurately reproduce the bladder volume during radiotherapy of postoperative prostate cancer and to guide CTV-PTV margins for clinic. Method: The experimental group consisted of 15 postoperative prostate cancer patients who utilized a setup method that combined OSMS and BladderScan. This group recorded 103 setup errors, verified by CBCT. The control group comprised 25 patients, among whom 114 setup errors were recorded using the conventional setup method involving skin markers; additionally, patients in this group also exhibited spontaneous urinary suppression. The errors including lateral (Lat), longitudinal (Lng), vertical directions (Vrt), Pitch, Yaw, and Roll were analyzed between the two methods. The Dice similarity coefficient (DSC) and volume differences of the bladder between CBCT and planning CT were compared as the bladder concordance indicators. Results: The errors in the experimental group at Vrt, Lat, and Lng were 0.17 ± 0.12, 0.22 ± 0.17, and 0.18 ± 0.12 cm, and the control group were 0.25 ± 0.15, 0.31 ± 0.21, 0.34 ± 0.22 cm. The rotation errors of Pitch, Roll, and Yaw in the experimental group were 0.18 ± 0.12°, 0.11 ± 0.1°, and 0.18 ± 0.13°, and in the control group, they were 0.96 ± 0.89°, 1.01 ± 0.86°, and 1.02 ± 0.84°. The DSC and volume differences were 92.52 ± 1.65% and 39.99 ± 28.75 cm3 in the patients with BladderScan, and in the control group, they were 62.98 ± 22.33%, 273.89 ± 190.62 cm3. The P < 0.01 of the above performance indicators indicates that the difference is statistically significant. Conclusion: The accuracy of the setup method by combining OSMS and BladderScan was validated by CBCT in our study. The method in our study can improve the setup accuracy during radiotherapy of postoperative prostate cancer compared to the conventional setup method.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Neoplasias de la Próstata , Vejiga Urinaria , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/efectos de la radiación , Anciano , Planificación de la Radioterapia Asistida por Computador/métodos , Periodo Posoperatorio , Persona de Mediana Edad , Radioterapia Guiada por Imagen/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA