Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Intervalo de año de publicación
1.
Glob Chang Biol ; 30(5): e17316, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767231

RESUMEN

Picophytoplankton are a ubiquitous component of marine plankton communities and are expected to be favored by global increases in seawater temperature and stratification associated with climate change. Eukaryotic and prokaryotic picophytoplankton have distinct ecology, and global models predict that the two groups will respond differently to future climate scenarios. At a nearshore observatory on the Northeast US Shelf, however, decades of year-round monitoring have shown these two groups to be highly synchronized in their responses to environmental variability. To reconcile the differences between regional and global predictions for picophytoplankton dynamics, we here investigate the picophytoplankton community across the continental shelf gradient from the nearshore observatory to the continental slope. We analyze flow cytometry data from 22 research cruises, comparing the response of picoeukaryote and Synechococcus communities to environmental variability across time and space. We find that the mechanisms controlling picophytoplankton abundance differ across taxa, season, and distance from shore. Like the prokaryote, Synechococcus, picoeukaryote division rates are limited nearshore by low temperatures in winter and spring, and higher temperatures offshore lead to an earlier spring bloom. Unlike Synechococcus, picoeukaryote concentration in summer decreases dramatically in offshore surface waters and exhibits deeper subsurface maxima. The offshore picoeukaryote community appears to be nutrient limited in the summer and subject to much greater loss rates than Synechococcus. This work both produces and demonstrates the necessity of taxon- and site-specific knowledge for accurately predicting the responses of picophytoplankton to ongoing environmental change.


Asunto(s)
Cambio Climático , Fitoplancton , Estaciones del Año , Synechococcus , Synechococcus/fisiología , Synechococcus/crecimiento & desarrollo , Fitoplancton/fisiología , Agua de Mar/química , Temperatura
2.
New Phytol ; 242(1): 77-92, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38339826

RESUMEN

Plant-microbe mutualisms, such as the legume-rhizobium symbiosis, are influenced by the geographical distributions of both partners. However, limitations on the native range of legumes, resulting from the absence of a compatible mutualist, have rarely been explored. We used a combination of a large-scale field survey and controlled experiments to determine the realized niche of Calicotome villosa, an abundant and widespread legume shrub. Soil type was a major factor affecting the distribution and abundance of C. villosa. In addition, we found a large region within its range in which neither C. villosa nor Bradyrhizobium, the bacterial genus that associates with it, were present. Seedlings grown in soil from this region failed to nodulate and were deficient in nitrogen. Inoculation of this soil with Bradyrhizobium isolated from root nodules of C. villosa resulted in the formation of nodules and higher growth rate, leaf N and shoot biomass compared with un-inoculated plants. We present evidence for the exclusion of a legume from parts of its native range by the absence of a compatible mutualist. This result highlights the importance of the co-distribution of both the host plant and its mutualist when attempting to understand present and future geographical distributions of legumes.


Asunto(s)
Bradyrhizobium , Fabaceae , Rhizobium , Fabaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Fijación del Nitrógeno , Simbiosis , Nitrógeno , Suelo
3.
Ecol Evol ; 14(2): e10974, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38362172

RESUMEN

Bioenergetics models estimate ectotherm growth, production, and prey consumption - all key for effective ecosystem management during changing global temperatures. Based on species-specific allometric and thermodynamic relationships, these models typically use the species' lab-derived optimum temperatures (physiological optimum) as opposed to empirical field data (realized thermal niche) that reflect actual thermal experience. Yet, dynamic behavioral thermoregulation mediated by biotic and abiotic interactions may provide substantial divergence between physiological optimum and realized thermal niche temperatures to significantly bias model outcomes. Here, using the Wisconsin bioenergetics model and in-situ year-round temperature data, we tested the two approaches and compared the maximum attainable lifetime weight and lifetime prey consumption estimates for two salmonid species with differing life histories. We demonstrate that using the realized thermal niche is the better approach because it eliminates significant biases in estimates produced by the physiological optimum. Specifically, using the physiological optimum, slower-growing Salvelinus namaycush maximum attainable lifetime weight was underestimated, and consumption overestimated, while fast-growing Oncorhynchus tshawytscha maximum attainable weight was overestimated. While the physiological optimum approach is useful for theoretical studies, our results demonstrate the critical importance that models used by management utilize up-to-date system- and species-specific field data representing actual in-situ behaviors (i.e., realized thermal niche).

4.
Ecol Lett ; 27(1): e14369, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38247040

RESUMEN

Why many herbivorous insects are host plant specialists, with non-negligible exceptions, is a conundrum of evolutionary biology, especially because the host plants are not necessarily optimal larval diets. Here, I present a novel model of host plant preference evolution of two insect species. Because habitat preference evolution is contingent upon demographic dynamics, I integrate the evolutionary framework with the modern coexistence theory. The results show that the two insect species can evolve into a habitat specialist and generalist, when they experience both negative and positive frequency-dependent community dynamics. This happens because the joint action of positive and negative frequency dependence creates multiple (up to nine) eco-evolutionary equilibria. Furthermore, initial condition dependence due to positive frequency dependence allows specialization to poor habitats. Thus, evolved habitat preferences do not necessarily correlate with the performances. The model provides explanations for counterintuitive empirical patterns and mechanistic interpretations for phenomenological models of niche breadth evolution.


Asunto(s)
Herbivoria , Insectos , Animales , Larva , Plantas , Ecosistema
5.
Harmful Algae ; 125: 102427, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37220979

RESUMEN

Dinophysis acuminata, the main cause of shellfish harvesting bans in Europe, blooms in the Galician Rías (NW Spain) throughout the upwelling season (ca. March to September). Here we illustrate rapid changes in vertical and across ría-shelf distributions of diatoms and dinoflagellates (including D. acuminata vegetative and small cells) in Ría de Pontevedra (RP) and Ría de Vigo (RV) during transitions from spin-down to spin-up phases of upwelling cycles. A subniche approach based on a Within Outlying Mean Index (WitOMI) showed that under the transient environmental conditions met during the cruise, both vegetative and small cells of D. acuminata colonized the Ria and Mid-shelf subniches, exhibiting good tolerance and extremely high marginality, in particular the small cells. Bottom-up (abiotic) control overwhelmed biological constraints, and shelf waters became a more favourable environment than the Rías. Contrasting higher biotic constraints inside the Rías were found for the small cells, with a subniche possibly controlled by unsuitable physiological status (notwithstanding the higher density) of the vegetative cell population. Results here on behaviour (vertical positioning) and physiological traits (high tolerance but very specialized niche) of D. acuminata give new insights into the ability of this species to remain in the upwelling circulation system. Higher shelf-ría exchanges in the Ría (RP) with more dense and persistent D. acuminata blooms reveal the relevance of transient event-scales and species- and site-specific characteristics to the fate of these blooms. Earlier statements about simple linear relationships between average upwelling intensities and the recurrence of Harmful algae bloom (HAB) events in the Galician Rías Baixas are questioned.


Asunto(s)
Diatomeas , Dinoflagelados , Floraciones de Algas Nocivas , Europa (Continente) , Alimentos Marinos
6.
Front Plant Sci ; 13: 881879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832227

RESUMEN

The topographic gradients of the Tropical Andes may have triggered species divergence by different mechanisms. Topography separates species' geographical ranges and offers climatic heterogeneity, which could potentially foster local adaptation to specific climatic conditions and result in narrowly distributed endemic species. Such a pattern is found in the Andean centered palm genus Aiphanes. To test the extent to which geographic barriers and climatic heterogeneity can explain distribution patterns in Aiphanes, we sampled 34 out of 36 currently recognized species in that genus and sequenced them by Sanger sequencing and/or sequence target capture sequencing. We generated Bayesian, likelihood, and species-tree phylogenies, with which we explored climatic trait evolution from current climatic occupation. We also estimated species distribution models to test the relative roles of geographical and climatic divergence in their evolution. We found that Aiphanes originated in the Miocene in Andean environments and possibly in mid-elevation habitats. Diversification is related to the occupation of the adjacent high and low elevation habitats tracking high annual precipitation and low precipitation seasonality (moist habitats). Different species in different clades repeatedly occupy all the different temperatures offered by the elevation gradient from 0 to 3,000 m in different geographically isolated areas. A pattern of conserved adaptation to moist environments is consistent among the clades. Our results stress the evolutionary roles of niche truncation of wide thermal tolerance by physical range fragmentation, coupled with water-related niche conservatism, to colonize the topographic gradient.

7.
Ecology ; 103(12): e3827, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35857374

RESUMEN

Species range sizes and realized niche breadths vary tremendously. Understanding the source of this variation has been a long-term aim in evolutionary ecology and is a major tool in efforts to ameliorate the impacts of changing climates on species distributions. Species ranges that span a large climatic envelope can be achieved by a collection of specialized genotypes locally adapted to a small range of conditions, by genotypes with stable fitness across variable environments, or a combination of these factors. We asked whether fitness expressed along a key niche axis, water availability, could explain a species' realized niche breadth, its geographic range and climate breadth, in 11 species from a clade of jewelflowers whose range sizes vary by two orders of magnitude. Specifically, we explored whether the range size of a species was related to the ability of genotypes (maternal families) to maintain fitness across a range of experimental water availabilities based on 30-year historical field precipitation regimes. We operationally characterized fitness homeostasis through the coefficient of variation in fitness of a genotype (family) across the experimental water gradient. We found that species with genotypes that had high fitness homeostasis, low variation in fitness over our treatments, had larger climatic niche breadth and geographic range in their field distributions. The result was robust to alternate measures of fitness homeostasis. Our results show that the fitness homeostasis of genotypes can be a major factor contributing to niche breadth and range size in this clade. Fitness homeostasis can buffer species from loss of genetic diversity and under changing climates, provides time for adaptation to future conditions.


Asunto(s)
Clima , Ecosistema , Humanos , Agua , Evolución Biológica , Homeostasis
8.
PeerJ ; 10: e13269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573178

RESUMEN

Background: The accuracy of predictions of invasive species ranges is dependent on niche similarity between invasive and native populations and on our ability to identify the niche characteristics. With this work we aimed to compare the niche dynamics of two genetically related invasive populations of Vespa velutina (an effective predator of honeybees and wild pollinators), in two distinct climatic regions, one in central Europe and another one in the north-western Iberian Peninsula, and hence to identify uninvaded regions susceptible to invasion. Methods: Niche dynamics and shifts of V. velutina were assessed by comparing the environmental niches of the native and of the two invasive populations, using climatic, topographic and land use variables. We also ran reciprocal distribution models using different algorithms and records from both native and invasive ranges to compare model predictions and estimate which regions are at a greater risk of being invaded. Results: An apparent niche shift was detected in the population of the NW of Iberian Peninsula, where the species is living under environmental conditions different from the native niche. In central Europe, large suitable areas remain unoccupied. The fact that both invasive populations are well established, despite occupying environmentally distinct regions indicates that V. velutina has a high ability to successfully invade different environmental envelopes from those existing in its native range. For example, in north-western Iberian Peninsula the species is now thriving out of its native niche limits. Moreover, the large extent of still unoccupied environmental space with similar conditions to those used by the species in its native range suggests that there is still a large area of central and eastern Europe that can be potentially invaded by the species.


Asunto(s)
Ecosistema , Avispas , Abejas , Animales , Especies Introducidas , Europa (Continente) , Europa Oriental
9.
Ecol Evol ; 12(2): e8542, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35154647

RESUMEN

The parallel niche release hypothesis (PNR) indicates that reduced competition with dominant competitors results in greater density and niche breadth of subordinate competitors and which may support an adaptive advantage.We assessed support for the PNR by evaluating relationships between variation in niche breadth and intra- and interspecific density (an index of competition) of wolves (Canis lupus) coyotes (C. latrans), and bobcats (Lynx rufus).We estimated population density (wolf track surveys, coyote howl surveys, and bobcat hair snare surveys) and variability in space use (50% core autocorrelated kernel density home range estimators), temporal activity (hourly and overnight speed), and dietary (isotopic δ13C and δ15N) niche breadth of each species across three areas of varying wolf density in the Upper Peninsula of Michigan, USA, 2010-2019.Densities of wolves and coyotes were inversely related, and increased variability in space use, temporal activity, and dietary niche breadth of coyotes was associated with increased coyote density and decreased wolf density supporting the PNR. Variability in space use and temporal activity of wolves and dietary niche breadth of bobcats also increased with increased intraspecific density supporting the PNR.Through demonstrating decreased competition between wolves and coyotes and increased coyote niche breadth and density, our study provides multidimensional support for the PNR. Knowledge of the relationship between niche breadth and population density can inform our understanding of the role of competition in shaping the realized niche of species.

10.
Sci Total Environ ; 822: 153432, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35090931

RESUMEN

Landscape change alters species' distributions, and understanding these changes is a key ecological and conservation goal. Species-habitat relationships are often modelled in the absence of syntopic species, but niche theory and emerging empirical research suggests heterospecifics should entrain (and statistically explain) variability in distribution, perhaps synergistically by interacting with landscape features. We examined the effects of syntopic species in boreal mammals' relationship to landscape change, using three years of camera-trap data in the western Nearctic boreal forest. Using an information-theoretic framework, we weighed evidence for additive and interactive variables measuring heterospecifics' co-occurrence in species distribution models built on natural and anthropogenic landscape features. We competed multiple hypotheses about the roles of natural features, anthropogenic features, predators, competitors, and species-habitat interaction terms in explaining relative abundance of carnivores, herbivores, and omnivores/scavengers. For most species, models including heterospecifics explained occurrence frequency better than landscape features alone. Dominant predator (wolf) occurrence was best explained by prey, while prey species were explained by apparent competitors and subdominant predators. Evidence for interactions between landscape features and heterospecifics was strong for coyotes and wolves but variable for other species. Boreal mammals' spatial distribution is a function of heterospecific co-occurrence as well as landscape features, with synergistic effects observed for most species. Understanding species' responses to anthropogenic landscape change thus requires a multi-taxa approach that incorporates interspecific relationships, enabling better inference into underlying processes from observed patterns.


Asunto(s)
Ciervos , Lobos , Animales , Ciervos/fisiología , Ecosistema , Conducta Predatoria , Taiga , Lobos/fisiología
11.
Glob Chang Biol ; 28(3): 1023-1037, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748262

RESUMEN

Rising temperatures may endanger fragile ecosystems because their character and key species show different habitat affinities under different climates. This assumption has only been tested in limited geographical scales. In fens, one of the most endangered ecosystems in Europe, broader pH niches have been reported from cold areas and are expected for colder past periods. We used the largest European-scale vegetation database from fens to test the hypothesis that pH interacts with macroclimate temperature in forming realized niches of fen moss and vascular plant species. We calibrated the data set (29,885 plots after heterogeneity-constrained resampling) with temperature, using two macroclimate variables, and with the adjusted pH, a variable combining pH and calcium richness. We modelled temperature, pH and water level niches for one hundred species best characterizing European fens using generalized additive models and tested the interaction between pH and temperature. Fifty-five fen species showed a statistically significant interaction between pH and temperature (adj p Ë‚ .01). Forty-six of them (84%) showed a positive interaction manifested by a shift or restriction of their niche to higher pH in warmer locations. Nine vascular plants and no moss showed the opposite interaction. Mosses showed significantly greater interaction. We conclude that climate significantly modulates edaphic niches of fen plants, especially bryophytes. This result explains previously reported regional changes in realized pH niches, a current habitat-dependent decline of endangered taxa, and distribution changes in the past. A warmer climate makes growing seasons longer and warmer, increases productivity, and may lower the water level. These effects prolong the duration and intensity of interspecific competition, support highly competitive Sphagnum mosses, and, as such, force niches of specialized fen species towards narrower high-pH ranges. Recent anthropogenic landscape changes pose a severe threat to many fen species and call for mitigation measures to lower competition pressure in their refugia.


Asunto(s)
Briófitas , Sphagnopsida , Cambio Climático , Ecosistema , Concentración de Iones de Hidrógeno , Temperatura
12.
Ecol Evol ; 11(14): 9410-9422, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34306631

RESUMEN

AIM: To investigate whether the frequently advocated climate-matching species distribution modeling approach could predict the well-characterized colonization of Florida by the Madagascar giant day gecko Phelsuma grandis. LOCATION: Madagascar and Florida, USA. METHODS: To determine the climatic conditions associated with the native range of P. grandis, we used native-range presence-only records and Bioclim climatic data to build a Maxent species distribution model and projected the climatic thresholds of the native range onto Florida. We then built an analogous model using Florida presence-only data and projected it onto Madagascar. We constructed a third model using native-range presences for both P. grandis and the closely related parapatric species P. kochi. RESULTS: Despite performing well within the native range, our Madagascar Bioclim model failed to identify suitable climatic habitat currently occupied by P. grandis in Florida. The model constructed using Florida presences also failed to reflect the distribution in Madagascar by overpredicting distribution, especially in western areas occupied by P. kochi. The model built using the combined P. kochi/P. grandis dataset modestly improved the prediction of the range of P. grandis in Florida, thereby implying competitive exclusion of P. grandis by P. kochi from habitat within the former's fundamental niche. These findings thus suggest ecological release of P. grandis in Florida. However, because ecological release cannot fully explain the divergent occupied niches of P. grandis in Madagascar versus Florida, our findings also demonstrate some degree of in situ adaptation in Florida. MAIN CONCLUSIONS: Our models suggest that the discrepancy between the predicted and observed range of P. grandis in Florida is attributable to either in situ adaptation by P. grandis within Florida, or a combination of such in situ adaptation and competition with P. kochi in Madagascar. Our study demonstrates that climate-matching species distribution models can severely underpredict the establishment risk posed by non-native herpetofauna.

13.
Harmful Algae ; 103: 102010, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980449

RESUMEN

Dinophysis acuta and D. acuminata are associated with lipophilic toxins in Southern Chile. Blooms of the two species coincided during summer 2019 in a highly stratified fjord system (Puyuhuapi, Chilean Patagonia). High vertical resolution measurements of physical parameters were carried out during 48 h sampling to i) explore physiological status (e.g., division rates, toxin content) and ii) illustrate the fine scale distribution of D. acuta and D. acuminata populations with a focus on water column structure and co-occurring plastid-bearing ciliates. The species-specific resources and regulators defining the realized niches (sensu Hutchinson) of the two species were identified. Differences in vertical distribution, daily vertical migration and in situ division rates (with record values, 0.76 d-1, in D. acuta), in response to the environmental conditions and potential prey availability, revealed their niche differences. The Outlying Mean Index (OMI) analysis showed that the realized niche of D. acuta (cell maximum 7 × 103 cells L-1 within the pycnocline) was characterized by sub-surface estuarine waters (salinity 23 - 25), lower values of turbulence and PAR, and a narrow niche breath. In contrast, the realized niche of D. acuminata (cell maximum 6.8 × 103 cells L-1 just above the pycnocline) was characterized by fresher (salinity 17 - 20) outflowing surface waters, with higher turbulence and light intensity and a wider niche breadth. Results from OMI and PERMANOVA analyses of co-occurring microplanktonic ciliates were compatible with the hypothesis of species such as those from genera Pseudotontonia and Strombidium constituting an alternative ciliate prey to Mesodinium. The D. acuta cell maximum was associated with DSP (OA and DTX-1) toxins and pectenotoxins; that of D. acuminata only with pectenotoxins. Results presented here contribute to a better understanding of the environmental drivers of species-specific blooms of Dinophysis and management of their distinct effects in Southern Chile.


Asunto(s)
Cilióforos , Dinoflagelados , Diferenciación Celular , Chile , Estuarios
14.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33397717

RESUMEN

Cities and agricultural fields encroach on the most fertile, habitable terrestrial landscapes, fundamentally altering global ecosystems. Today, 75% of terrestrial ecosystems are considerably altered by human activities, and landscape transformation continues to accelerate. Human impacts are one of the major drivers of the current biodiversity crisis, and they have had unprecedented consequences on ecosystem function and rates of species extinctions for thousands of years. Here we use the fossil record to investigate whether changes in geographic range that could result from human impacts have altered the climatic niches of 46 species covering six mammal orders within the contiguous United States. Sixty-seven percent of the studied mammals have significantly different climatic niches today than they did before the onset of the Industrial Revolution. Niches changed the most in the portions of the range that overlap with human-impacted landscapes. Whether by forcible elimination/introduction or more indirect means, large-bodied dietary specialists have been extirpated from climatic envelopes that characterize human-impacted areas, whereas smaller, generalist mammals have been facilitated, colonizing these same areas of the climatic space. Importantly, the climates where we find mammals today do not necessarily represent their past habitats. Without mitigation, as we move further into the Anthropocene, we can anticipate a low standing biodiversity dominated by small, generalist mammals.


Asunto(s)
Agricultura , Distribución Animal , Clima , Fósiles , Mamíferos , Urbanización , Animales , Tamaño Corporal , Conservación de los Recursos Naturales , Dieta , Ecosistema , Humanos , Factores de Tiempo , Estados Unidos
15.
Ecology ; 102(4): e03285, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33462847

RESUMEN

Revitalizing our understanding of species distributions and assembly in community ecology requires greater use of functional (physiological) approaches based on quantifiable factors such as energetics. Here, we explore niche partitioning between bumble and honey bees by comparing a measure of within-patch foraging efficiency, the ratio of flower visitation rate (proportional to energy gain) to body mass (energy cost). This explained a remarkable 74% of the variation in the proportions of bumble to honey bees across 22 plant species and was confirmed using detailed energy calculations. Bumble bees visited flowers at a greater rate (realizing greater energy benefits) than honey bees, but were heavier (incurring greater energy costs) and predominated only on plant species where their benefit : cost ratio was higher than for honey bees. Importantly, the competition between honey bees and bumble bees had no consistent winner, thus highlighting the importance of plant diversity to the coexistence of competing bees. By contrast, tongue : corolla-tube-length ratio explained only 7% of the variation (non-significant). Our results confirm the importance of energetics in understanding community ecology and bee foraging niche and highlight the energetic tightrope navigated by foraging bees, since approximately half the nectar energy gained was expended in its collection.


Asunto(s)
Néctar de las Plantas , Polinización , Animales , Abejas , Ecología , Flores , Plantas
16.
IMA Fungus ; 11(1): 23, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33292867

RESUMEN

Due to their submerged and cryptic lifestyle, the vast majority of fungal species are difficult to observe and describe morphologically, and many remain known to science only from sequences detected in environmental samples. The lack of practices to delimit and name most fungal species is a staggering limitation to communication and interpretation of ecology and evolution in kingdom Fungi. Here, we use environmental sequence data as taxonomical evidence and combine phylogenetic and ecological data to generate and test species hypotheses in the class Archaeorhizomycetes (Taphrinomycotina, Ascomycota). Based on environmental amplicon sequencing from a well-studied Swedish pine forest podzol soil, we generate 68 distinct species hypotheses of Archaeorhizomycetes, of which two correspond to the only described species in the class. Nine of the species hypotheses represent 78% of the sequenced Archaeorhizomycetes community, and are supported by long read data that form the backbone for delimiting species hypothesis based on phylogenetic branch lengths.Soil fungal communities are shaped by environmental filtering and competitive exclusion so that closely related species are less likely to co-occur in a niche if adaptive traits are evolutionarily conserved. In soil profiles, distinct vertical horizons represent a testable niche dimension, and we found significantly differential distribution across samples for a well-supported pair of sister species hypotheses. Based on the combination of phylogenetic and ecological evidence, we identify two novel species for which we provide molecular diagnostics and propose names. While environmental sequences cannot be automatically translated to species, they can be used to generate phylogenetically distinct species hypotheses that can be further tested using sequences as ecological evidence. We conclude that in the case of abundantly and frequently observed species, environmental sequences can support species recognition in the absences of physical specimens, while rare taxa remain uncaptured at our sampling and sequencing intensity.

17.
Front Microbiol ; 11: 1942, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849483

RESUMEN

Organisms and their resident microbial communities - the microbiome - form a complex and mostly stable ecosystem. It is known that the composition of the microbiome and bacterial species abundances can have a major impact on host health and Darwinian fitness, but the processes that lead to these microbial patterns have not yet been identified. We here apply the niche concept and trait-based approaches as a first step in understanding the patterns underlying microbial community assembly and structure in the simple metaorganism Hydra. We find that the carrying capacities in single associations do not reflect microbiota densities as part of the community, indicating a discrepancy between the fundamental and realized niche. Whereas in most cases, the realized niche is smaller than the fundamental one, as predicted by theory, the opposite is observed for Hydra's two main bacterial colonizers. Both, Curvibacter sp. and Duganella sp. benefit from association with the other members of the microbiome and reach higher fractions as compared to when they are the only colonizer. This cannot be linked to any particular trait that is relevant for interacting with the host or by the utilization of specific nutrients but is most likely determined by metabolic interactions between the individual microbiome members.

18.
PeerJ ; 8: e9143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523807

RESUMEN

We investigated survival and cause-specific mortality for a mountain goat (Oreamnos americanus) population during a period when the puma (Puma concolor) population was growing in the Black Hills, South Dakota, 2006-2018. We obtained survival data from 47 adult goats (n = 33 females, n = 14 males). Annual survival varied from 0.538 (95% CI [0.285-0.773]) to 1.00 (95% CI [1.00-1.00]) and puma predation was the primary cause-specific mortality factor over a 12-year period. Cumulative hectares of mountain pine beetle (Dendroctonus ponderosae) disturbance was a covariate of importance (w i  = 0.972; ß = 0.580, 95% CI [0.302-0.859]) influencing survival. To our knowledge, this is the first account of puma being the primary mortality factor of mountain goats over a long-term study. The Black Hills system is unique because we could examine the expanded realized niche of puma in the absence of other large carnivores and their influence on mountain goats. We hypothesize that puma were being sustained at higher densities due to alternate prey sources (e.g., white-tailed deer; Odocoileous virginianus) and this small population of mountain goats was susceptible to predation by one or several specialized puma in the Black Hills. However, we also hypothesize a changing landscape with increased tree mortality due to insect infestation provided conditions for better predator detection by goats and increased survival. Alternatively, open canopy conditions may have increased understory forage production potentially increasing mountain goat survival but we did not evaluate this relationship. Survival and mortality rates of mountain goats should continue to be monitored as this small population may be highly susceptible to population declines due to slow growth rates.

19.
Rev. biol. trop ; 68(1)mar. 2020.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1507657

RESUMEN

Introduction: Invasive species are considered the second cause of extinction of native species after habitat loss. The impacts of invasive species have serious economic implications since the presence of this type of species can result in a decrease in ecosystem services granted to humans. In marine systems, some human activities such as maritime transport and aquaculture have favored the dispersion of invasive species, especially those with commercial importance. This paper describes the potential distribution of the tiger shrimp, Penaeus monodon, an invasive species along the American Atlantic coast. Objective: To describe a potential distribution model of Penaeus monodon in the American Atlantic region and compare the environmental characteristics of this region with those of the Indo-Pacific original niche conditions. Methods: Using geographic and environmental data, we constructed and tested three models to determine the efficiency of MaxEnt v. 3.3 software in predicting new areas for the distribution of this invasive shrimp species. Geographic data were downloaded from such web sites as the Global Biodiversity Information Facility, the Ocean Biogeographic Information System, and the United States Geological Survey, as well from literature. Environmental data were downloaded from Bio-Oracle v2.0 data base. The three tested models were: 1) the first was created using only recordings of Penaeus monodon from the Indo-Pacific (its origin zone) and then projected to the Atlantic (native model); 2) the second was built using only recordings from the invaded area; the training and projection area of this model was the Atlantic (invasive model); 3) the third included recordings from both the Indo-Pacific and Atlantic regions, and the model was trained and projected jointly in both areas (complete model). We extracted the values of the three models for each tiger shrimp sightings in the invaded area; sightings with values ³ 0.5 were considered as valid prediction of occurrence of the species. Results: We found that the following variables explained 80 % of species distribution: phosphates from the ocean surface, coastal type, chlorophyll a, and maximum bottom temperature. In terms of the models' ability to predict the occurrences reported in the Atlantic, results were as follows: Native model had a prediction index of 40 %; Invasive model was able to predict 81 % of recordings; and complete model predicted 92 % of total occurrences reported in the invaded area. Conclusions: Our findings suggest that based on the complete model, the countries where the tiger shrimp could establish itself are Mexico and Cuba. Continuous monitoring and conservation actions are relevant in the countries where this species is currently established, as well of those countries with potential for invasions.


Introducción: Las especies invasoras son consideradas como la segunda causa de extinción de especies nativas después de la pérdida del hábitat. Los impactos de las especies invasivas tienen serias implicaciones económicas, ya que su presencia puede resultar en un decremento de los servicios ecosistémicos que benefician al hombre. En los sistemas marinos, algunas actividades humanas como el transporte marítimo y la acuicultura han favorecido la dispersión de especies invasivas, especialmente aquellas con importancia comercial. Este artículo describe la distribución potencial del camarón tigre, Penaeus monodon, una especie invasora a lo largo de la costa Atlántica Occidental. Objetivo: Describir un modelo de distribución potencial de Penaeus monodon en la región del Atlántico americano y comparar las características ambientales de esta región con las condiciones del nicho original del Indo-Pacífico. Metodología: Usando datos geográficos y ambientales, se generaron tres modelos para determinar la eficiencia del software MaxEnt v.3.3 en la predicción de nuevas áreas para la distribución de esta especie invasora. Los datos geográficos se descargaron de sitios web como el Fondo para la Información sobre la Biodiversidad Mundial, el Sistema de Información Biogeográfica del Océano y el Servicio Geológico de los Estados Unidos de América, así como de la literatura. Los datos ambientales fueron descargados de Bio-Oracle v2.0. Los tres modelos probados fueron: 1) registros de P. monodon de la región del Indo-Pacífico (zona de origen) y su proyección al Océano Atlántico (modelo nativo); 2) registros del área invadida, al utilizar el Océano Atlántico como área de entrenamiento y proyección del modelo (modelo invasivo); y 3) registros de las áreas Indo-Pacífico y Atlántico para capacitar y proyectar el modelo conjuntamente en ambas áreas (modelo completo). Extrajimos los valores de los tres modelos para cada avistamiento de camarones tigre en el área invadida; los avistamientos con valores ³ 0.5 fueron considerados como predicciones válidas de presencia de la especie. Resultados: Los resultados mostraron que las siguientes variables explicaron el 80 % de la distribución de la especie: fosfatos del fondo marino, tipo de costa, clorofila a y temperatura máxima del fondo. En términos de las capacidades de los modelos para predecir las presencias reportadas en el Atlántico, los resultados fueron los siguientes: modelo nativo, tuvo un índice de predicción del 40 %; modelo invasivo fue capaz de predecir el 81 % de los registros; y modelo completo predijo el 92 % de las ocurrencias totales reportadas en el área de invasión. Conclusiones: Se encontró que, con base en el modelo conjunto, los países donde el camarón tigre se podría establecer son México y Cuba. Esto sugiere que el monitoreo continuo y las acciones de conservación son relevantes en los países donde esta especie está actualmente establecida, así como en aquellos países con el potencial de ser invadidos.

20.
Plant Biol (Stuttg) ; 22(3): 494-499, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31872474

RESUMEN

Shade avoidance is expected to be favoured under moderate light. However, in previous studies, shade avoidance was highest in the deepest shade, despite the fact that the plants incur the costs of shade avoidance without the benefits of being exposed to increased light. We performed shading experiments under different light intensities to understand: (i) how shade avoidance traits of Penthorum chinense could peak in moderate light, and (ii) if there was a trade-off between plant height and allocation of seeds along the light gradients. Penthorum chinense increased shade avoidance traits such as height per total dry mass as the amount of light decreased. Side stem number per total dry mass of P. chinense decreased as shade became deeper, from full light to low light. Regressions on seed mass fraction and height were significant with a linear model (y = -0.0006x + 0.1338). There were more resources allocated to seeds under low light than under moderate light. Penthorum chinense increased shade avoidance traits with the decrease in light amount, as found in previously studied species. There was a trade-off between height and production of more seeds. The reproductive strategy of P. chinense was to increase seed mass fraction under low light more than under moderate light. This species might be able to expand established populations by both rhizomes and seeds under low light environments.


Asunto(s)
Magnoliopsida , Luz Solar , Magnoliopsida/fisiología , Reproducción/fisiología , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA