Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Phys Imaging Radiat Oncol ; 31: 100632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39257572

RESUMEN

Background and Purpose: The primary cause of range uncertainty in proton therapy is inaccuracy in estimating the stopping-power ratio from computed tomography. This study examined the impact on dose-volume metrics by reducing range uncertainty in robust optimisation for a diverse patient cohort and determined the level of range uncertainty that resulted in a relevant reduction in doses to organs-at-risk (OARs). Materials and Methods: The effect of reducing range uncertainty on OAR doses was evaluated by robustly optimising six proton plans with varying range uncertainty levels (ranging from 3.5% in the original plan to 1.0%), keeping setup uncertainty fixed. All plans used the initial clinical treatment plan's beam directions and optimisation objectives and were optimised until a clinically acceptable plan was achieved across all setup and range scenarios. The effect of reduced range uncertainty on dose-volume metrics for OARs near the target was evaluated. This study included 30 brain cancer patients, as well as five head-and-neck and five breast cancer patients, investigating the relevance of reducing range uncertainty when different setup uncertainties were used. Results: Lowering range uncertainty slightly reduced the nominal dose to surrounding tissue. For body volume receiving 80% of the prescribed dose, reducing range uncertainty from 3.5% to 2.0% resulted in a median decrease of 4 cm3 for the brain, 17 cm3 for head-and-neck, and 27 cm3 for breast cancer patients. Conclusions: Reducing range uncertainty in robust optimisation showed a reduction in dose to OARs. The clinical relevance depends on the affected organs and the clinical dose constraints.

2.
Phys Med ; 120: 103341, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554639

RESUMEN

BACKGROUND AND PURPOSE: This work introduces the first assessment of CT calibration following the ESTRO's consensus guidelines and validating the HLUT through the irradiation of biological material. METHODS: Two electron density phantoms were scanned with two CT scanners using two CT scan energies. The stopping power ratio (SPR) and mass density (MD) HLUTs for different CT scan energies were derived using Schneider's and ESTRO's methods. The comparison metric in this work is based on the Water-Equivalent Thickness (WET) difference between the treatment planning system and biological irradiation measurement. The SPR HLUTs were compared between the two calibration methods. To assess the accuracy of using MD HLUT for dose calculation in the treatment planning system, MD vs SPR HLUT was compared. Lastly, the feasibility of using a single SPR HLUT to replace two different energy CT scans was explored. RESULTS: The results show a WET difference of less than 3.5% except for the result in the Bone region between Schneider's and ESTRO's methods. Comparing MD and SPR HLUT, the results from MD HLUT show less than a 3.5% difference except for the Bone region. However, the SPR HLUT shows a lower mean absolute percentage difference as compared to MD HLUT between the measured and calculated WET difference. Lastly, it is possible to use a single SPR HLUT for two different CT scan energies since both WET differences are within 3.5%. CONCLUSION: This is the first report on calibrating an HLUT following the ESTRO's guidelines. While our result shows incremental improvement in range uncertainty using the ESTRO's guideline, the prescriptional approach of the guideline does promote harmonization of CT calibration protocols between different centres.


Asunto(s)
Terapia de Protones , Protones , Terapia de Protones/métodos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Tomógrafos Computarizados por Rayos X , Calibración , Agua
3.
Phys Med Biol ; 69(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38324904

RESUMEN

Objective. Proton therapy reduces the integral dose to the patient compared to conventional photon treatments. However,in vivoproton range uncertainties remain a considerable hurdle. Range uncertainty reduction benefits depend on clinical practices. During intensity-modulated proton therapy (IMPT), the target is irradiated from only a few directions, but proton arc therapy (PAT), for which the target is irradiated from dozens of angles, may see clinical implementation by the time considerable range uncertainty reductions are achieved. It is therefore crucial to determine the impact of PAT on range uncertainty reduction benefits.Approach. For twenty head-and-neck cancer patients, four different treatment plans were created: an IMPT and a PAT treatment plan assuming current clinical range uncertainties of 3.5% (IMPT3.5%and PAT3.5%), and an IMPT and a PAT treatment plan assuming that range uncertainties can be reduced to 1% (IMPT1%and PAT1%). Plans were evaluated with respect to target coverage and organ-at-risk doses as well as normal tissue complication probabilities (NTCPs) for parotid glands (endpoint: parotid gland flow <25%) and larynx (endpoint: larynx edema).Main results. Implementation of PAT (IMPT3.5%-PAT3.5%) reduced mean NTCPs in the nominal and worst-case scenario by 3.2 percentage points (pp) and 4.2 pp, respectively. Reducing range uncertainties from 3.5% to 1% during use of IMPT (IMPT3.5%-IMPT1%) reduced evaluated NTCPs by 0.9 pp and 2.0 pp. Benefits of range uncertainty reductions subsequently to PAT implementation (PAT3.5%-PAT1%) were 0.2 pp and 1.0 pp, with considerably higher benefits in bilateral compared to unilateral cases.Significance. The mean clinical benefit of implementing PAT was more than twice as high as the benefit of a 3.5%-1% range uncertainty reduction. Range uncertainty reductions are expected to remain beneficial even after PAT implementation, especially in cases with target positions allowing for full leveraging of the higher number of gantry angles during PAT.


Asunto(s)
Neoplasias de Cabeza y Cuello , Terapia de Protones , Humanos , Terapia de Protones/métodos , Protones , Incertidumbre , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo , Neoplasias de Cabeza y Cuello/radioterapia
4.
Cancers (Basel) ; 16(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339393

RESUMEN

(1) Background: Proton therapy, a precise form of radiation treatment, can be significantly affected by variations in bowel content. The purpose was to identify the most beneficial gantry angles that minimize deviations from the treatment plan quality, thus enhancing the safety and efficacy of proton therapy for Wilms' tumor patients. (2) Methods: Thirteen patients with Wilms' tumor, enrolled in the SJWT21 clinical trial, underwent proton therapy. The variations in bowel gas were systematically monitored using daily Cone Beam Computed Tomography (CBCT) imaging. Air cavities identified in daily CBCT images were analyzed to construct daily verification plans and measure water equivalent path length (WEPL) changes. A worst-case scenario simulation was conducted to identify the safest beam angles. (3) Results: The study revealed a maximum decrease in target dose (ΔD100%) of 8.0%, which corresponded to a WEPL variation (ΔWEPL) of 11.3 mm. The average reduction in target dose, denoted as mean ΔD100%, was found to be 2.8%, with a standard deviation (SD) of 3.2%. The mean ΔWEPL was observed as 3.3 mm, with an SD of 2.7 mm. The worst-case scenario analysis suggested that gantry beam angles oriented toward the patient's right and posterior aspects from 110° to 310° were associated with minimized WEPL discrepancies. (4) Conclusions: This study comprehensively evaluated the influence of bowel gas variability on treatment plan accuracy and proton range uncertainties in pediatric proton therapy for Wilms' tumor.

5.
Med Phys ; 50(12): 7338-7348, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820319

RESUMEN

BACKGROUND: Linear energy transfer (LET) is closely related to the biological effect of ionizing radiation. Increasing the dose-averaged LET (LETd ) within the target volume has been proposed as a means to improve clinical outcome for hypoxic tumors. However, doing so can lead to reduced robustness to range uncertainty. PURPOSE: To quantify the relationship between robust target coverage, target dose uniformity, and LETd , we employ robust optimization using dose-based and LETd -based functions and allow varying amounts of target non-uniformity. METHODS AND MATERIALS: Robust carbon therapy optimization is used to create plans for phantom cases with increasing target sizes (radii 1, 3, and 5 cm). First, the influence of respectively range and setup uncertainty on the LETd in the target is studied. Second, we employ strategies allowing overdosage in the clinical target volume (CTV) or gross tumor volume (GTV), which enable increased LETd in the target. The relationship between robust target coverage and LETd in the target is illustrated by tradeoff curves generated by optimization using varying weights for the LETd -based functions. RESULTS: As the range uncertainty used in the robust optimization increased from 0% to 5%, the near-minimum nominal LETd decreased by 17%-29% (9-21 keV/µm) for the different target sizes. The effect of increasing setup uncertainty was marginal. Allowing 10% overdosage in the CTV enabled 9%-29% (6-12 keV/µm) increased near-minimum worst case LETd for the different target sizes, compared to uniform dose plans. When 10% overdosage was allowed in the GTV only, the increase was 1%-20% (1-8 keV/µm). CONCLUSIONS: There is an inherent conflict between range uncertainty robustness and high LETd in the target, which is aggravated with increasing target size. For large tumors, it is possible to simultaneously achieve two of the three qualities range robustness, uniform dose, and high LETd in the target.


Asunto(s)
Neoplasias , Terapia de Protones , Humanos , Transferencia Lineal de Energía , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias/radioterapia , Fantasmas de Imagen , Dosificación Radioterapéutica
6.
Cancers (Basel) ; 15(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37686476

RESUMEN

(1) Background: Synthetic CT images of the pelvis were generated from daily CBCT images to monitor changes in water equivalent path length (WEPL) and determine the dosimetric impact of anatomy changes along the proton beam's path; (2) Methods: Ten pediatric patients with pelvic tumors treated using proton therapy with daily CBCT were included. The original planning CT was deformed to the same-day CBCT to generate synthetic CT images for WEPL comparison and dosimetric evaluation; (3) Results: WEPL changes of 20 proton fields at the distal edge of the CTV ranged from 0.1 to 12 mm with a median of 2.5 mm, and 75th percentile of 5.1 mm for (the original CT-rescanned CT) and ranged from 0.3 to 10.1 mm with a median of 2.45 mm and 75th percentile of 4.8 mm for (the original CT-synthetic CT). The dosimetric impact was due to proton range pullback or overshoot, which led to reduced coverage in CTV Dmin averaging 12.1% and 11.3% in the rescanned and synthetic CT verification plans, respectively; (4) Conclusions: The study demonstrated that synthetic CT generated by deforming the original planning CT to daily CBCT can be used to quantify proton range changes and predict adverse dosimetric scenarios without the need for excessive rescanned CT scans during large interfractional variations in adaptive proton therapy of pediatric pelvic tumors.

7.
Acta Oncol ; 62(11): 1461-1469, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37703314

RESUMEN

BACKGROUND: In proton therapy, it is disputed whether synthetic computed tomography (sCT), derived from magnetic resonance imaging (MRI), permits accurate dose calculations. On the one hand, an MRI-only workflow could eliminate errors caused by, e.g., MRI-CT registration. On the other hand, the extra error would be induced due to an sCT generation model. This work investigated the systematic and random model error induced by sCT generation of a widely discussed deep learning model, pix2pix. MATERIAL AND METHODS: An open-source image dataset of 19 patients with cancer in the pelvis was employed and split into 10, 5, and 4 for training, testing, and validation of the model, respectively. Proton pencil beams (200 MeV) were simulated on the real CT and generated sCT using the tool for particle simulation (TOPAS). Monte Carlo (MC) dropout was used for error estimation (50 random sCT samples). Systematic and random model errors were investigated for sCT generation and dose calculation on sCT. RESULTS: For sCT generation, random model error near the edge of the body (∼200 HU) was higher than that within the body (∼100 HU near the bone edge and <10 HU in soft tissue). The mean absolute error (MAE) was 49 ± 5, 191 ± 23, and 503 ± 70 HU for the whole body, bone, and air in the patient, respectively. Random model errors of the proton range were small (<0.2 mm) for all spots and evenly distributed throughout the proton fields. Systematic errors of the proton range were -1.0(±2.2) mm and 0.4(±0.9)%, respectively, and were unevenly distributed within the proton fields. For 4.5% of the spots, large errors (>5 mm) were found, which may relate to MRI-CT mismatch due to, e.g., registration, MRI distortion anatomical changes, etc. CONCLUSION: The sCT model was shown to be robust, i.e., had a low random model error. However, further investigation to reduce and even predict and manage systematic error is still needed for future MRI-only proton therapy.


Asunto(s)
Aprendizaje Profundo , Humanos , Protones , Incertidumbre , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Pelvis , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
8.
Appl Radiat Isot ; 200: 110951, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487427

RESUMEN

Cancer treatment with protons and carbon ions relies on the property of the accelerated charged particles to deposit most of their energy in the vicinity of their range (around the Bragg peak). The level of hydration in a cancer patient's body may vary within hours. Some patients may be heavy to moderately dehydrated, and some may be well and even excessively hydrated. In this research, we aim to estimate the uncertainty of the protons and C-ion ranges because of the different hydration levels of the human body. For the study of the impact of body hydration level on the particle's ranges, we have designed a new phantom model - a homogeneous mixture of an Average HUuman BOdy constituting elements (AHUBO) in three states of hydration: normal (n), dehydrated (d), and excessively hydrated (e) by applying corresponding recalibration in the "atomic-stoichiometry model" due to the water sufficiency/deficiency. The purpose of the study is to estimate the shift in the ranges depending on the hydration level, possibly suggest particle beam energy adjustments to overcome the range uncertainties, to deliver the prescribed dose to the tumour while sparing the healthy tissue. Herein we present the results of the FLUKA-Flair simulations of the therapeutic range of energies of protons (50-105 MeV) and C-ions (30-210 MeV) respectively, into an AHUBO head phantom model at three levels of hydration (normal, dehydrated, and excessively hydrated). The range uncertainty was estimated via the shifts of the Bragg-peaks position for the three different hydration levels. The estimations showed that the range uncertainty (ΔR) due to body hydration for the maximum energy in the range for protons at 105 MeV is about 0.04 mm and for C-ions at 190 MeV/u is about 0.06 mm.


Asunto(s)
Terapia de Protones , Protones , Humanos , Radiometría/métodos , Incertidumbre , Cuerpo Humano , Iones , Método de Montecarlo
9.
Phys Med Biol ; 68(17)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37463589

RESUMEN

Objective. Range uncertainty in proton therapy is an important factor limiting clinical effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential (Im), electron density, and stopping power ratio (SPR). We aimed to develop a novel MR-based multimodal method to accurately determine SPR and molecular compositions. This method was evaluated in tissue-mimicking andex vivoporcine phantoms, and in a brain radiotherapy patient.Approach. Four tissue-mimicking phantoms with known compositions, two porcine tissue phantoms, and a brain cancer patient were imaged with kVCT and MRI. Three imaging-based values were determined: SPRCM(CT-based Multimodal), SPRMM(MR-based Multimodal), and SPRstoich(stoichiometric calibration). MRI was used to determine two tissue-specific quantities of the Bethe Bloch equation (Im, electron density) to compute SPRCMand SPRMM. Imaging-based SPRs were compared to measurements for phantoms in a proton beam using a multilayer ionization chamber (SPRMLIC).Main results. Root mean square errors relative to SPRMLICwere 0.0104(0.86%), 0.0046(0.45%), and 0.0142(1.31%) for SPRCM, SPRMM, and SPRstoich, respectively. The largest errors were in bony phantoms, while soft tissue and porcine tissue phantoms had <1% errors across all SPR values. Relative to known physical molecular compositions, imaging-determined compositions differed by approximately ≤10%. In the brain case, the largest differences between SPRstoichand SPRMMwere in bone and high lipids/fat tissue. The magnitudes and trends of these differences matched phantom results.Significance. Our MR-based multimodal method determined molecular compositions and SPR in various tissue-mimicking phantoms with high accuracy, as confirmed with proton beam measurements. This method also revealed significant SPR differences compared to stoichiometric kVCT-only calculation in a clinical case, with the largest differences in bone. These findings support that including MRI in proton therapy treatment planning can improve the accuracy of calculated SPR values and reduce range uncertainties.


Asunto(s)
Neoplasias Encefálicas , Terapia de Protones , Animales , Porcinos , Protones , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Imagen por Resonancia Magnética , Calibración , Planificación de la Radioterapia Asistida por Computador/métodos
10.
J Appl Clin Med Phys ; 24(10): e14062, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37312288

RESUMEN

OBJECTIVE: The stopping power ratio (SPR) prediction error will contribute to the range uncertainty of proton therapy. Spectral CT is promising in reducing the uncertainty in SPR estimation. The purpose of this research is to determine the optimal energy pairs of SPR prediction for each tissue and to evaluate the dose distribution and range difference between the spectral CT with the optimal energy pairs method and the single energy CT (SECT) method. METHODS: A new method was proposed based on image segmentation to calculate the proton dose with spectral CT images for the head and body phantom. CT number of each organ region were converted to SPR with the optimal energy pairs of each organ. The CT images were segmented into different organ parts with thresholding method. Virtual monoenergetic (VM) images from 70 keV to 140 keV were investigated to determine the optimal energy pairs for each organ based on Gammex 1467 phantom. The beam data of Shanghai Advanced Proton Therapy facility (SAPT) was employed in matRad (an open-source software for radiation treatment planning) for the dose calculation. RESULTS: The optimal energy pairs were obtained for each tissue. The dose distribution of two tumor sites (brain and lung) were calculated with the aforementioned optimal energy pairs. The maximum dose deviation between spectral CT and SECT at the target region was 2.57% and 0.84% for the lung tumor and brain tumor respectively. The range difference between spectral and SECT was significant with 1.8411 mm for the lung tumor. γ passing rate was 85.95% and 95.49% for the lung tumor and brain tumor with the criterion 2%/2 mm. CONCLUSIONS: This work presents a way to determine the optimal energy pairs for each organ and to calculate the dose distribution based on the more accurate SPR prediction.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Terapia de Protones , Humanos , Protones , Incertidumbre , Tomografía Computarizada por Rayos X/métodos , China , Terapia de Protones/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Fantasmas de Imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia
11.
Phys Imaging Radiat Oncol ; 26: 100441, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37182194

RESUMEN

Background and Purpose: Proton therapy is sensitive to range uncertainties, which typically are accounted for by margins or robust optimization, based on tissue-independent uncertainties. However, range uncertainties have been shown to depend on the specific tissues traversed. The aim of this study was to investigate the differences between range margins based on stopping power ratio (SPR) uncertainties which were tissue-specific (applied voxel-wise) or fixed (tissue-independent or composite). Materials and Methods: Uncertainties originating from imaging, computed tomography (CT) number estimation, and SPR estimation were calculated for low-, medium-, and high-density tissues to quantify the tissue-specific SPR uncertainties. Four clinical treatment plans (four different tumor sites) were created and recomputed after applying either tissue-specific or fixed SPR uncertainties. Plans with tissue-specific and fixed uncertainties were compared, based on dose-volume-histogram parameters for both targets and organs-at-risk. Results: The total SPR uncertainties were 7.0% for low-, 1.0% for medium-, and 1.3% for high-density tissues. Differences between the proton plans with tissue-specific and fixed uncertainties were mainly found in the vicinity of the target. Composite uncertainties were found to capture the tissue-specific uncertainties more accurately than the tissue-independent uncertainties. Conclusion: Different SPR uncertainties were found for low-, medium-, and high-density tissues indicating that range margins based on tissue-specific uncertainties may be more exact than the standard approach of using tissue-independent uncertainties. Differences between applying tissue-specific and fixed uncertainties were found, however, a fixed uncertainty might still be sufficient, but with a magnitude that depends on the body region.

12.
J Appl Clin Med Phys ; 24(8): e13977, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37032540

RESUMEN

Radiotherapy with protons or light ions can offer accurate and precise treatment delivery. Accurate knowledge of the stopping power ratio (SPR) distribution of the tissues in the patient is crucial for improving dose prediction in patients during planning. However, materials of uncertain stoichiometric composition such as dental implant and restoration materials can substantially impair particle therapy treatment planning due to related SPR prediction uncertainties. This study investigated the impact of using dual-energy computed tomography (DECT) imaging for characterizing and compensating for commonly used dental implant and restoration materials during particle therapy treatment planning. Radiological material parameters of ten common dental materials were determined using two different DECT techniques: sequential acquisition CT (SACT) and dual-layer spectral CT (DLCT). DECT-based direct SPR predictions of dental materials via spectral image data were compared to conventional single-energy CT (SECT)-based SPR predictions obtained via indirect CT-number-to-SPR conversion. DECT techniques were found overall to reduce uncertainty in SPR predictions in dental implant and restoration materials compared to SECT, although DECT methods showed limitations for materials containing elements of a high atomic number. To assess the influence on treatment planning, an anthropomorphic head phantom with a removable tooth containing lithium disilicate as a dental material was used. The results indicated that both DECT techniques predicted similar ranges for beams unobstructed by dental material in the head phantom. When ion beams passed through the lithium disilicate restoration, DLCT-based SPR predictions using a projection-based method showed better agreement with measured reference SPR values (range deviation: 0.2 mm) compared to SECT-based predictions. DECT-based SPR prediction may improve the management of certain non-tissue dental implant and restoration materials and subsequently increase dose prediction accuracy.


Asunto(s)
Implantes Dentales , Terapia de Protones , Humanos , Tomografía Computarizada por Rayos X/métodos , Protones , Fantasmas de Imagen
13.
Phys Med Biol ; 68(4)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36595276

RESUMEN

Range uncertainty has been a key factor preventing particle radiotherapy from reaching its full physical potential. One of the main contributing sources is the uncertainty in estimating particle stopping power (ρs) within patients. Currently, theρsdistribution in a patient is derived from a single-energy CT (SECT) scan acquired for treatment planning by converting CT number expressed in Hounsfield units (HU) of each voxel toρsusing a Hounsfield look-up table (HLUT), also known as the CT calibration curve. HU andρsshare a linear relationship with electron density but differ in their additional dependence on elemental composition through different physical properties, i.e. effective atomic number and mean excitation energy, respectively. Because of that, the HLUT approach is particularly sensitive to differences in elemental composition between real human tissues and tissue surrogates as well as tissue variations within and among individual patients. The use of dual-energy CT (DECT) forρsprediction has been shown to be effective in reducing the uncertainty inρsestimation compared to SECT. The acquisition of CT data over different x-ray spectra yields additional information on the material elemental composition. Recently, multi-energy CT (MECT) has been explored to deduct material-specific information with higher dimensionality, which has the potential to further improve the accuracy ofρsestimation. Even though various DECT and MECT methods have been proposed and evaluated over the years, these approaches are still only scarcely implemented in routine clinical practice. In this topical review, we aim at accelerating this translation process by providing: (1) a comprehensive review of the existing DECT/MECT methods forρsestimation with their respective strengths and weaknesses; (2) a general review of uncertainties associated with DECT/MECT methods; (3) a general review of different aspects related to clinical implementation of DECT/MECT methods; (4) other potential advanced DECT/MECT applications beyondρsestimation.


Asunto(s)
Terapia de Protones , Humanos , Terapia de Protones/métodos , Tomografía Computarizada por Rayos X/métodos , Incertidumbre , Calibración , Fantasmas de Imagen
14.
Phys Med Biol ; 67(24)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36379067

RESUMEN

Objective.Proton therapy after breast-conserving surgery (BCS) can substantially reduce the dose to lung and cardiac structures. However, these dosimetric benefits are subject to beam range uncertainty in patient. The conversion of the CT-Hounsfield unit (HU) into relative stopping power (RSP) is the primary contribution to range uncertainty. Hence, an accurate HU-RSP conversion is essential.Approach.Real tissue samples, including muscle and adipose, were prepared. The water equivalent path length (WEPL) of these samples was measured under homogeneous conditions using a 12-diode detector array of our time-resolvedin vivorange verification system (IRVS). The HU-RSP conversion was improved using the measured WEPL and HU for adipose tissue. The measured WEPL values were compared with the treatment planning calculation results based on the stoichiometric CT-HU calibration technique. The effect was investigated for both with and without adipose tissue in HU-RSP conversion.Main results.The IRVS was calibrated based on the solid water phantom. The relative differences in WEPL (RSP) between measurements and calculations for muscle, adipose, and water was -1.19% (-0.75%), -4.25%(-4%), and -0.23%(-0.07%), respectively. Based on the improved HU-RSP conversion, the relative differences in WEPL was reduced to -0.97%(-0.62%), -1.50%(-1.46%), and -0.22% (0.00%), respectively.Significance.The WEPL deviation of adipose tissue is larger than the testing limit of 3.5% for beam range robustness in current clinical practice. However, the improved HU-RSP conversion reduced this deviation. The main component of breast tissue is adipose. Hence, the proton treatment of BCS can be undershooting if no proper measures are taken against this specific uncertainty.


Asunto(s)
Neoplasias de la Mama , Terapia de Protones , Protones , Humanos , Tejido Adiposo , Músculos , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/terapia , Mastectomía Segmentaria , Femenino
15.
Phys Med Biol ; 67(20)2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162404

RESUMEN

Objective. Proton therapy of cancer improves dose conformality to the target and sparing of surrounding healthy tissues compared to conventional photon treatments. However, proton therapy's advantage could be even larger if proton range uncertainties were reduced. Sources of range uncertainties include computed tomography treatment planning images and variations in patient anatomy and setup. To reduce range uncertainties, we have developed a system for real-timein vivorange monitoring. The system is based on spectroscopy of prompt gamma-rays emitted through proton-nuclear interactions during irradiation. We validated the performance of our prompt gamma-ray spectroscopy detector prototype using tissue-mimicking and porcine samples.Approach. Measurements were performed in water, four tissue-mimicking samples (spongiosa, muscle, adipose tissue, and cortical bone), and two porcine samples (liver and brain). A dose of 0.9 Gy was delivered to a target at a depth of 12.5-17.5 cm. Multi-layer ionization chamber measurements were performed to determine stopping power ratios relative to water and ground truth proton ranges. Ground truth elemental compositions were determined using combustion analysis. Proton ranges and elemental compositions measured using prompt gamma-ray spectroscopy were compared to the ground truth.Main results. For all samples, the mean measured range over all pencil-beam spots differed from the ground truth by less than 1.2 mm. The mean standard deviation was 0.9 mm (range: 0.4-1.6 mm). The mean difference between ground truth and measured elemental compositions was 0.06gcm3(range: 0.00gcm3to 0.12gcm3).Significance. We verified the performance of our prompt gamma-ray spectroscopy detector prototype for proton range verification using tissue-mimicking and porcine samples. Measured proton ranges and elemental sample compositions were in good agreement with the ground truth. These measurements confirm the system's reliability for a variety of tissues and bridge the gap between previously-reported experiments and ongoingin vivopatient measurements.


Asunto(s)
Terapia de Protones , Animales , Fantasmas de Imagen , Terapia de Protones/métodos , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Análisis Espectral , Porcinos , Agua/química
16.
Front Oncol ; 12: 853495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530308

RESUMEN

In particle therapy treatment planning, dose calculation is conducted using patient-specific maps of tissue ion stopping power ratio (SPR) to predict beam ranges. Improving patient-specific SPR prediction is therefore essential for accurate dose calculation. In this study, we investigated the use of the Spectral CT 7500, a second-generation dual-layer spectral computed tomography (DLCT) system, as an alternative to conventional single-energy CT (SECT) for patient-specific SPR prediction. This dual-energy CT (DECT)-based method allows for the direct prediction of SPR from quantitative measurements of relative electron density and effective atomic number using the Bethe equation, whereas the conventional SECT-based method consists of indirect image data-based prediction through the conversion of calibrated CT numbers to SPR. The performance of the Spectral CT 7500 in particle therapy treatment planning was characterized by conducting a thorough analysis of its SPR prediction accuracy for both tissue-equivalent materials and common non-tissue implant materials. In both instances, DLCT was found to reduce uncertainty in SPR predictions compared to SECT. Mean deviations of 0.7% and 1.6% from measured SPR values were found for DLCT- and SECT-based predictions, respectively, in tissue-equivalent materials. Furthermore, end-to-end analyses of DLCT-based treatment planning were performed for proton, helium, and carbon ion therapies with anthropomorphic head and pelvic phantoms. 3D gamma analysis was performed with ionization chamber array measurements as the reference. DLCT-predicted dose distributions revealed higher passing rates compared to SECT-predicted dose distributions. In the DLCT-based treatment plans, measured distal-edge evaluation layers were within 1 mm of their predicted positions, demonstrating the accuracy of DLCT-based particle range prediction. This study demonstrated that the use of the Spectral CT 7500 in particle therapy treatment planning may lead to better agreement between planned and delivered dose compared to current clinical SECT systems.

17.
Med Phys ; 49(7): 4693-4704, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35362163

RESUMEN

PURPOSE: In proton therapy, dose distributions are currently often conformed to organs at risk (OARs) using the less sharp dose fall-off at the lateral beam edge to reduce the effects of uncertainties in the in vivo proton range. However, range uncertainty reductions may make greater use of the sharper dose fall-off at the distal beam edge feasible, potentially improving OAR sparing. We quantified the benefits of such novel beam arrangements. METHODS: For each of 10 brain or skull base cases, five treatment plans robust to 2 mm setup and 0%-4% range uncertainty were created for the traditional clinical beam arrangement and a novel beam arrangement making greater use of the distal beam edge to conform the dose distribution to the brainstem. Metrics including the brainstem normal tissue complication probability (NTCP) with the endpoint of necrosis were determined for all plans and all setup and range uncertainty scenarios. RESULTS: For the traditional beam arrangement, reducing the range uncertainty from the current level of approximately 4% to a potentially achievable level of 1% reduced the brainstem NTCP by up to 0.9 percentage points in the nominal and up to 1.5 percentage points in the worst-case scenario. Switching to the novel beam arrangement at 1% range uncertainty improved these values by a factor of 2, that is, to 1.8 percentage points and 3.2 percentage points, respectively. The novel beam arrangement achieved a lower brainstem NTCP in all cases starting at a range uncertainty of 2%. CONCLUSION: The benefits of novel beam arrangements may be of the same magnitude or even exceed the direct benefits of range uncertainty reductions. Indirect effects may therefore contribute markedly to the benefits of reducing proton range uncertainties.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Estudios de Factibilidad , Órganos en Riesgo , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Incertidumbre
18.
Radiother Oncol ; 166: 71-78, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774653

RESUMEN

PURPOSE: To quantifiy the range uncertainty in proton treatment planning using dual-energy computed tomography (DECT) for a direct stopping-power prediction (DirectSPR) algorithm and its clinical implementation. METHODS AND MATERIALS: To assess the overall uncertainty in stopping-power ratio (SPR) prediction of a DirectSPR implementation calibrated for different patient geometries, the influencing factors were categorized in imaging, modeling as well as others. The respective SPR uncertainty was quantified for lung, soft tissue and bone and translated into range uncertainty for several tumor types. The amount of healthy tissue spared was quantified for 250 patients treated with DirectSPR and the dosimetric impact was evaluated exemplarily for a representative brain-tumor patient. RESULTS: For bone, soft tissue and lung, an SPR uncertainty (1σ) of 1.6%, 1.3% and 1.3% was determined for DirectSPR, respectively. This allowed for a reduction of the clinically applied range uncertainty from currently (3.5% + 2 mm) to (1.7% + 2 mm) for brain-tumor and (2.0% + 2 mm) for prostate-cancer patients. The 150 brain-tumor and 100 prostate-cancer patients treated using DirectSPR benefitted from sparing on average 2.6 mm and 4.4 mm of healthy tissue in beam direction, respectively. In the representative patient case, dose reduction in organs at risk close to the target volume was achieved, with a mean dose reduction of up to 16% in the brainstem. Patient-specific DECT-based treatment planning with reduced safety margins was successfully introduced into clinical routine. CONCLUSIONS: A substantial increase in range prediction accuracy in clinical proton treatment planning was achieved by patient-specific DECT-based SPR prediction. For the first time, a relevant imaging-based reduction of range prediction uncertainty on a 2% level has been achieved.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Próstata , Terapia de Protones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Humanos , Masculino , Fantasmas de Imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Terapia de Protones/métodos , Protones , Radiometría , Tomografía Computarizada por Rayos X/métodos
19.
Phys Imaging Radiat Oncol ; 20: 117-120, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34917780

RESUMEN

Margin concepts in proton therapy aim to ensure full dose coverage of the clinical target volume (CTV) in presence of setup and range uncertainty. Due to inter-observer variability (IOV), the CTV itself is uncertain. We present a framework to evaluate the combined impact of IOV, setup and range uncertainty in a variance-based sensitivity analysis (SA). For ten patients with skull base meningioma, the mean calculation time to perform the SA including 1.6 × 104 dose recalculations was 59 min. For two patients in this dataset, IOV had a relevant impact on the estimated CTV D95% uncertainty.

20.
Phys Med Biol ; 66(21)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34534971

RESUMEN

Objective. The aim of the phantom study was to validate and to improve the computed tomography (CT) images used for the dose computation in proton therapy. It was tested, if the joint reconstruction of activity and attenuation images of time-of-flight PET (ToF-PET) scans could improve the estimation of the proton stopping-power.Approach. The attenuation images, i.e. CT images with 511 keV gamma-rays (γCTs), were jointly reconstructed with activity maps from ToF-PET scans. Theß+activity was produced with FDG and in a separate experiment with proton-induced radioactivation. The phantoms contained slabs of tissue substitutes. The use of theγCTs for the prediction of the beam stopping in proton therapy was based on a linear relationship between theγ-ray attenuation, the electron density, and the stopping-power of fast protons.Main results. The FDG based experiment showed sufficient linearity to detect a bias of bony tissue in the heuristic look-up table, which maps between x-ray CT images and proton stopping-power.γCTs can be used for dose computation, if the electron density of one type of tissue is provided as a scaling factor. A possible limitation is imposed by the spatial resolution, which is inferior by a factor of 2.5 compared to the one of the x-ray CT.γCTs can also be derived from off-line, ToF-PET scans subsequent to the application of a proton field with a hypofractionated dose level.Significance. γCTs are a viable tool to support the estimation of proton stopping with radiotracer-based ToF-PET data from diagnosis or staging. This could be of higher potential relevance in MRI-guided proton therapy.γCTs could form an alternative approach to make use of in-beam or off-line PET scans of proton-inducedß+activity with possible clinical limitations due to the low number of coincidence counts.


Asunto(s)
Terapia de Protones , Algoritmos , Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA