Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 21(217): 20240133, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39110232

RESUMEN

The magnetic compass sense of migratory songbirds is thought to derive from magnetically sensitive photochemical reactions in cryptochromes located in photoreceptor cells in the birds' retinas. More specifically, transient radical pairs formed by light-activation of these proteins have been proposed to account for the birds' ability to orient themselves using the Earth's magnetic field and for the observation that radiofrequency magnetic fields, superimposed on the Earth's magnetic field, can disrupt this ability. Here, by means of spin dynamics simulations, we show that it may be possible for the birds to orient in a monochromatic radiofrequency field in the absence of the Earth's magnetic field. If such a behavioural test were successful, it would provide powerful additional evidence for a radical pair mechanism of avian magnetoreception.


Asunto(s)
Campos Magnéticos , Animales , Criptocromos/metabolismo , Ondas de Radio , Planeta Tierra , Pájaros Cantores/fisiología , Modelos Biológicos , Orientación/fisiología , Migración Animal/fisiología
2.
Natl Sci Rev ; 11(9): nwae069, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39144743

RESUMEN

Although magnetism undoubtedly influences life on Earth, the science behind biological magnetic sensing is largely a mystery, and it has proved challenging, especially in the life sciences, to harness the interactions of magnetic fields (MFs) with matter to achieve specific ends. Using the well-established radical pair (RP) mechanism, we here demonstrate a bottom-up strategy for the exploitation of MF effects in living cells by translating knowledge from studies of RP reactions performed in vitro. We found an unprecedented MF dependence of the reactivity of singlet oxygen (1O2) towards electron-rich substrates (S) such as anthracene, lipids and iodide, in which [S ˙+ O2 ˙-] RPs are formed as a basis for MFs influencing molecular redox events in biological systems. The close similarity of the observed MF effects on the biologically relevant process of lipid peroxidation in solution, in membrane mimics and in living cells, shows that MFs can reliably be used to manipulate 1O2-induced cytotoxicity and cell-apoptosis-related protein expression. These findings led to a 'proof-of-concept' study on MF-assisted photodynamic therapy in vivo, highlighting the potential of MFs as a non-invasive tool for controlling cellular events.

3.
Adv Mater ; 36(35): e2405876, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38935407

RESUMEN

The disordered phase of spinel LiMn1.5Ni0.5O4 (LNMO) is more appealing as high-voltage cathode due to its superior electrochemical performance compared to its ordered counterpart. Various methods are developed to induce a phase transition. However, the resulting materials often suffer from capacity degradation due to the adverse influence of accompanying Mn3+ ions. This study presents the utilization of local magnetic fields generated by a magnetic Fe3O4 shell to induce a disordered phase transition in LNMO at lower temperature, transitioning it from an order state without significantly increasing the Mn3+ content. The pivotal role played by the local magnetic fields is evidenced through comparisons with samples with nonmagnetic Al2O3 shell, samples subjected to sole heat treatment, and samples heat-treated within magnetic fields. The key finding is that magnetic fields can initiate a radical pair mechanism, enabling the induction of order-disorder phase transition even at lower temperatures. The disordered spinal LNMO with a magnetic Fe3O4 shell exhibits excellent cycling stability and kinetic properties in electrochemical characterization as a result. This innovation not only unravels the intricate interplay between the disordered phase and Mn3+ content in the cathode spinel but also pioneers the use of magnetic field effects for manipulating material phases.

4.
Biochim Biophys Acta Bioenerg ; 1865(3): 149044, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588942

RESUMEN

Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema II , Synechococcus , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Synechococcus/metabolismo , Clorofila/metabolismo , Clorofila/química , Luz , Transporte de Electrón , Spinacia oleracea/metabolismo
5.
Biology (Basel) ; 13(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38666874

RESUMEN

Marine fish migrate long distances up to hundreds or even thousands of kilometers for various reasons that include seasonal dependencies, feeding, or reproduction. The ability to perceive the geomagnetic field, called magnetoreception, is one of the many mechanisms allowing some fish to navigate reliably in the aquatic realm. While it is believed that the photoreceptor protein cryptochrome 4 (Cry4) is the key component for the radical pair-based magnetoreception mechanism in night migratory songbirds, the Cry4 mechanism in fish is still largely unexplored. The present study aims to investigate properties of the fish Cry4 protein in order to understand the potential involvement in a radical pair-based magnetoreception. Specifically, a computationally reconstructed atomistic model of Cry4 from the Atlantic herring (Clupea harengus) was studied employing classical molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) methods to investigate internal electron transfers and the radical pair formation. The QM/MM simulations reveal that electron transfers occur similarly to those found experimentally and computationally in Cry4 from European robin (Erithacus rubecula). It is therefore plausible that the investigated Atlantic herring Cry4 has the physical and chemical properties to form radical pairs that in turn could provide fish with a radical pair-based magnetic field compass sensor.

6.
Front Physiol ; 15: 1348395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370016

RESUMEN

Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 µT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.

7.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255921

RESUMEN

5-Deazaflavins are analogs of naturally occurring flavin cofactors. They serve as substitutes for natural flavin cofactors to investigate and modify the reaction pathways of flavoproteins. Demethylated 5-deazaflavins are potential candidates for artificial cofactors, allowing us to fine-tune the reaction kinetics and absorption characteristics of flavoproteins. In this contribution, demethylated 5-deazariboflavin radicals are investigated (1) to assess the influence of the methyl groups on the electronic structure of the 5-deazaflavin radical and (2) to explore their photophysical properties with regard to their potential as artificial cofactors. We determined the proton hyperfine structure of demethylated 5-deazariboflavins using photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy, as well as density functional theory (DFT). To provide context, we compare our findings to a study of flavin mononucleotide (FMN) derivatives. We found a significant influence of the methylation pattern on the absorption properties, as well as on the proton hyperfine coupling ratios of the xylene moiety, which appears to be solvent-dependent. This effect is enhanced by the replacement of N5 by C5-H in 5-deazaflavin derivatives compared to their respective flavin counterparts.


Asunto(s)
Dinitrocresoles , Protones , Riboflavina , Análisis Espectral , Flavoproteínas
8.
Front Physiol ; 14: 1338479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148902

RESUMEN

One possible explanation for magnetosensing in biology, such as avian magnetoreception, is based on the spin dynamics of certain chemical reactions that involve radical pairs. Radical pairs have been suggested to also play a role in anesthesia, hyperactivity, neurogenesis, circadian clock rhythm, microtubule assembly, etc. It thus seems critical to probe the credibility of such models. One way to do so is through isotope effects with different nuclear spins. Here we briefly review the papers involving spin-related isotope effects in biology. We suggest studying isotope effects can be an interesting avenue for quantum biology.

9.
Front Plant Sci ; 14: 1266357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860259

RESUMEN

Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.

10.
Front Physiol ; 14: 1250798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670767

RESUMEN

Cryptochromes are flavoproteins related to photolyases that are widespread throughout the plant and animal kingdom. They govern blue light-dependent growth in plants, control circadian rhythms in a light-dependent manner in invertebrates, and play a central part in the circadian clock in vertebrates. In addition, cryptochromes might function as receptors that allow animals to sense the Earth's magnetic field. As cryptochromes are also present in mammals including humans, the possibility of a magnetosensitive protein is exciting. Here we attempt to provide a concise overview of cryptochromes in mammals. We briefly review their canonical role in the circadian rhythm from the molecular level to physiology, behaviour and diseases. We then discuss their disputed light sensitivity and proposed role in the magnetic sense in mammals, providing three mechanistic hypotheses. Specifically, mammalian cryptochromes could form light-induced radical pairs in particular cellular milieus, act as magnetoreceptors in darkness, or as secondary players in a magnetoreception signalling cascade. Future research can test these hypotheses to investigate if the role of mammalian cryptochromes extends beyond the circadian clock.

11.
Proc Natl Acad Sci U S A ; 120(28): e2301153120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399422

RESUMEN

Night-migratory songbirds have a light-dependent magnetic compass sense, the mechanism of which is thought to depend on the photochemical formation of radical pairs in cryptochrome (Cry) proteins located in the retina. The finding that weak radiofrequency (RF) electromagnetic fields can prevent birds from orienting in the Earth's magnetic field has been regarded as a diagnostic test for this mechanism and as a potential source of information on the identities of the radicals. The maximum frequency that could cause such disorientation has been predicted to lie between 120 and 220 MHz for a flavin-tryptophan radical pair in Cry. Here we show that the magnetic orientation capabilities of Eurasian blackcaps (Sylvia atricapilla) are not affected by RF noise in the frequency bands 140 to 150 MHz and 235 to 245 MHz. From a consideration of its internal magnetic interactions, we argue that RF field effects on a flavin-containing radical-pair sensor should be approximately independent of frequency up to 116 MHz and that birds' sensitivity to RF disorientation should fall by about two orders of magnitude when the frequency exceeds 116 MHz. Taken together with our earlier finding that 75 to 85 MHz RF fields disrupt the magnetic orientation of blackcaps, these results provide compelling evidence that the magnetic compass of migratory birds operates by a radical pair mechanism.


Asunto(s)
Pájaros Cantores , Taxia , Animales , Pájaros Cantores/metabolismo , Procesos Fotoquímicos , Migración Animal , Campos Magnéticos , Criptocromos/metabolismo
12.
Biomolecules ; 13(7)2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37509147

RESUMEN

In the last few decades, evidence has surfaced that weak radiofrequency (RF) fields can influence biological systems. This work aims to improve our understanding of how externally applied weak RF fields alter concentrations of chemical parameters that characterize oxidative stress. We conducted a series of experiments to investigate the effects of applying weak RF magnetic fields within the 3-5 MHz region on mitochondrial respiration in both human fibrosarcoma and fibroblast cells over a period of four days. Our experimental data show that RF fields between 3 and 5 MHz were able to change the modulation of mitochondrial signaling by changing the cell growth, mitochondrial mass, and oxidative stress. Exposure to RF fields at 4.2 MHz significantly increased the mitochondrial mass and oxidative stress in fibrosarcoma cells. There are substantial concerns that extended exposure to weak RF fields can lead to health effects. The ability to control these parameters by external magnetic fields may have important clinical implications.


Asunto(s)
Fibrosarcoma , Estrés Oxidativo , Humanos , Fibroblastos , Ondas de Radio , Mitocondrias
13.
Artículo en Inglés | MEDLINE | ID: mdl-37184693

RESUMEN

Migratory animals can detect and use the Earth's magnetic field for orientation and navigation, sometimes over distances spanning thousands of kilometers. How they do so remains, however, one of the greatest mysteries in all sensory biology. Here, the author reviews the progress made to understand the molecular bases of the animal magnetic sense focusing on insect species, the only species in which genetic studies have so far been possible. The central hypothesis in the field posits that magnetically sensitive radical pairs formed by photoexcitation of cryptochrome proteins are key to animal magnetoreception. The author provides an overview of our current state of knowledge for the involvement of insect light-sensitive type I and light-insensitive type II cryptochromes in this enigmatic sense, and highlights some of the unanswered questions to gain a comprehensive understanding of magnetoreception at the organismal level.


Asunto(s)
Criptocromos , Sensación , Animales , Criptocromos/metabolismo , Insectos
14.
J Magn Reson ; 349: 107410, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36870248

RESUMEN

The EPR spectra of paramagnetic species induced by photoexcitation typically exhibit enhanced absorptive and emissive features resulting from sublevel populations that differ from thermal equilibrium. The populations and the resulting spin polarization of the spectra are dictated by the selectivity of the photophysical process generating the observed state. Simulation of the spin-polarized EPR spectra is crucial in the characterization of both the dynamics of formation of the photoexcited state as well as its electronic and structural properties. EasySpin, the simulation toolbox for EPR spectroscopy, now includes extended support for the simulation of the EPR spectra of spin-polarized states of arbitrary spin multiplicity and formed by a variety of different mechanisms, including photoexcited triplet states populated by intersystem crossing, charge recombination or spin polarization transfer, spin-correlated radical pairs created by photoinduced electron transfer, triplet pairs formed by singlet fission and multiplet states arising from photoexcitation in systems containing chromophores and stable radicals. In this paper, we highlight EasySpin's capabilities for the simulation of spin-polarized EPR spectra on the basis of illustrative examples from the literature in a variety of fields ranging across chemistry, biology, material science and quantum information science.

15.
Eur Biophys J ; 52(1-2): 27-37, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36792823

RESUMEN

Although the magnetosensitivity to weak magnetic fields, such as the geomagnetic field, which was exhibited by radical pairs that are potentially responsible for avian navigation, has been previously investigated by spin dynamics simulations, understanding this behavior for proposed radical pairs in other species is limited. These include, for example, radical pairs formed in the single-cell green alga Chlamydomonas reinhardtii (CraCRY) and in Columba livia (ClCRY4). In addition, the radical pair of FADH• with the one-electron reduced cyclobutane thymine dimer that was shown to be sensitive to weak magnetic fields has been of interest. In this work, we investigated the directional magnetosensitivity of these radical pairs to a weak magnetic field by spin dynamics simulations. We find significant reduction in the magnetosensitivity by inclusion of dipolar and exchange interactions, which can be mitigated by a scavenging radical, as demonstrated for the [FAD•- TyrD•] radical pair in CraCRY, but not for the [FADH• T□T•-] radical pair because of the large exchange coupling. The directional magnetosensitivity of the ClCRY4 [FAD•- TyrE•] radical pair can survive this adverse effect even without the scavenging reaction, possibly motivating further experimental exploration.


Asunto(s)
Columbidae , Criptocromos , Animales , Campos Magnéticos
16.
Bioengineering (Basel) ; 11(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38247887

RESUMEN

The impact of magnetic fields on cellular function is diverse but can be described at least in part by the radical pair mechanism (RPM), where magnetic field intervention alters reactive oxygen species (ROS) populations and downstream cellular signaling. Here, cellular migration within three-dimensional scaffolds was monitored in an applied oscillating 1.4 MHz radiofrequency (RF) magnetic field with an amplitude of 10 µT and a static 50 µT magnetic field. Given that cellular bioenergetics can be altered based on applied RF magnetic fields, this study focused on a magnetic field configuration that increased cellular respiration. Results suggest that RF accelerated cell clustering and elongation after 1 day, with increased levels of clustering and cellular linkage after 7 days. Cell distribution analysis within the scaffolds revealed that the clustering rate during the first day was increased nearly five times in the RF environment. Electron microscopy provided additional topological information and verified the development of fibrous networks, with a cell-derived matrix (CDM) visualized after 7 days in samples maintained in RF. This work demonstrates time-dependent cellular migration that may be influenced by quantum biology (QB) processes and downstream oxidative signaling, enhancing cellular migration behavior.

17.
J R Soc Interface ; 19(193): 20220325, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35919980

RESUMEN

Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.


Asunto(s)
Aves , Campos Magnéticos , Animales , Biología , Aves/fisiología
18.
Front Mol Biosci ; 9: 890826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813811

RESUMEN

In addition to the commonly used electron-electron double resonance (ELDOR) technique, there are several other electron paramagnetic resonance (EPR) methods by which structure information can be obtained by exploiting the dipolar coupling between two radicals based on its characteristic r -3 dependence. In this contribution, we explore the potential of out-of-phase-electron-spin echo envelope modulation (OOP-ESEEM) spectroscopy to collect accurate distance information in photo-sensitive (bio) molecules. Although the method has already been applied to spin-correlated radical pairs in several classes of light-active proteins, the accuracy of the information obtained has not yet been extensively evaluated. To do this in a system-independent fashion, OOP-ESEEM time traces simulated with different values of the dipolar and exchange couplings were generated and analyzed in a best-possible way. Excellent agreement between calculated and numerically fitted values over a wide range of distances (between 15 and 45 Å) was obtained. Furthermore, the limitations of the method and the dependence on various experimental parameters could be evaluated.

19.
Electromagn Biol Med ; 41(3): 293-303, 2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35543158

RESUMEN

The potential therapeutic uses of electromagnetic fields (EMF), part of the nonionizing radiation spectrum, increase with time. Among them, those considering the potential antitumor effects exerted by the Magnetic Fields (MFs), part of the EMF entity, have gained more and more interest. A recent review on this subject reports the MFs' effect on apoptosis of tumor cells as one of the most important breakthroughs. Apoptosis is considered a key mechanism regulating the genetic stability of cells and as such is considered of fundamental importance in cancer initiation and development. According to an atomic/sub-atomic analysis, based on quantum physics, of the complexity of biological life and the role played by oxygen and its radicals in cancer biology, a possible biophysical mechanism is described. The mechanism considers the influence of MFs on apoptosis through an effect on electron spin that is able to increase reactive oxygen species (ROS) concentration. Impacting on the delicate balance between ROS production and ROS elimination in tumor cells is considered a promising cancer therapy, affecting different biological processes, such as apoptosis and metastasis. An analysis in the literature, which allows correlation between MFs exposure characteristics and their influence on apoptosis and ROS concentration, supports the validity of the mechanism.


Asunto(s)
Apoptosis , Neoplasias , Campos Electromagnéticos , Humanos , Campos Magnéticos , Neoplasias/patología , Neoplasias/radioterapia , Especies Reactivas de Oxígeno
20.
Innovation (Camb) ; 3(3): 100229, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35373169

RESUMEN

How animals sense the geomagnetic field remains a mystery today. A remarkable diversity has been revealed in animal magnetoreception and several sophisticated models have been put forward in the past few decades, but none have been commonly accepted yet. Cryptochrome (Cry) has been proposed in both the radical pair model and the MagR/Cry-based biocompass model. How exactly it participates in magnetic sensing is an ongoing discussion. Here we wish to suggest an intermolecular electron transport (ET) pathway conserved in evolution in the MagR/Cry complex, in which electrons travel stepwise along a flavin-tryptophan chain as described in the classic radical pair model, and further extends to iron-sulfur clusters in MagR via a series of stepping-stone amino acids as an ET bridge. The hypothesis we presented here may provide a solution to unite different models, and a feasible explanation for the intrinsic magnetic features of MagR, as well as a mechanism for signaling in animal magnetoreception, which are of considerable interest in both biology and physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA