Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
J Gastroenterol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225750

RESUMEN

BACKGROUND: Defective hepatitis C virus (HCV) genomes with deletion of the envelope region have been occasionally reported by short-read sequencing analyses. However, the clinical and virological details of such deletion HCV have not been fully elucidated. METHODS: We developed a highly accurate single-molecule sequencing system for full-length HCV genes by combining the third-generation nanopore sequencing with rolling circle amplification (RCA) and investigated the characteristics of deletion HCV through the analysis of 21 patients chronically infected with genotype-1b HCV. RESULT: In 5 of the 21 patients, a defective HCV genome with approximately 2000 bp deletion from the E1 to NS2 region was detected, with the read frequencies of 34-77%, suggesting the trans-complementation of the co-infecting complete HCV. Deletion HCV was found exclusively in decompensated cirrhosis (5/12 patients), and no deletion HCV was observed in nine compensated patients. Comparing the amino acid substitutions between the deletion and complete HCV (DAS, deletion-associated substitutions), the deletion HCV showed higher amino acid mutations in the ISDR (interferon sensitivity-determining region) in NS5A, and also in the TMS (transmembrane segment) 3 to H (helix) 2 region of NS2. CONCLUSIONS: Defective HCV genome with deletion of envelope genes is associated with decompensated cirrhosis. The deletion HCV seems susceptible to innate immunity, such as endogenous interferon with NS5A mutations, escaping from acquired immunity with deletion of envelope proteins with potential modulation of replication capabilities with NS2 mutations. The relationship between these mutations and liver damage caused by HCV deletion is worth investigating.

2.
Virus Evol ; 10(1): veae053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119136

RESUMEN

Deformed wing virus (DWV) is a honey bee virus, whose emergence from relative obscurity is driven by the recent host-switch, adaptation, and global dispersal of the ectoparasitic mite Varroa destructor (a highly efficient vector of DWV) to reproduction on honey bees (Apis mellifera). Our study examines how varroa affects the continuing evolution of DWV, using the Azores archipelago, where varroa is present on only three out of the eight Islands, as a natural experimental system for comparing different evolutionary conditions and trajectories. We combined qPCR of 494 honey bee colonies sampled across the archipelago with amplicon deep sequencing to reveal how the DWV genetic landscape is altered by varroa. Two of the varroa-free Islands were also free of DWV, while a further two Islands were intriguingly dominated by the rare DWV-C major variant. The other four Islands, including the three varroa-infested Islands, were dominated by the common DWV-A and DWV-B variants. The varroa-infested Islands had, as expected, an elevated DWV prevalence relative to the uninfested Islands, but not elevated DWV loads, due the relatively high prevalence and loads of DWV-C on the varroa-free Islands. This establishes the Azores as a stable refuge for DWV-C and provides the most convincing evidence to date that at least some major strains of DWV may be capable of not just surviving, but actually thriving in honey bees in the absence of varroa-mediated transmission. We did not detect any change in DWV genetic diversity associated with island varroa status but did find a positive association of DWV diversity with virus load, irrespective of island varroa status.

3.
Virology ; 598: 110197, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098184

RESUMEN

Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Viral , Virus de la Hepatitis B , Hepatitis B , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/clasificación , Humanos , Hepatitis B/virología , Genotipo , Antivirales/uso terapéutico , Antivirales/farmacología
4.
Heliyon ; 10(12): e33180, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022058

RESUMEN

Background: The successful detection of drug-resistance mutations (DRMs) in HIV-1 infected patients has improved the management of HIV infection. Next-generation sequencing (NGS) to detect low-frequency mutations is predicted to be useful for efficiently testing minority drug resistance mutations, which could contribute to virological failure. This study employed Sanger sequencing and NGS to detect and compare minority and majority drug resistance mutations in HIV-1 strains in treatment-naive patients from Ghana. Method: From a previous study, 20 antiretroviral therapy (ART)-naive participants were selected for a cross-sectional study. Sanger sequencing and NGS techniques were used to detect the majority and minority HIV drug resistance (HIVDR) mutations, respectively, in the protease (PR) and partial reverse transcriptase (RT) genes. NGS detected mutations at 1 % and 5 % frequencies and Sanger sequencing at ≥20 % frequencies. The sequences obtained from NGS and Sanger sequencing platforms were submitted to the Stanford HIV drug resistance database for subtyping, mutation identification, and interpretations. Results: Sequences from the twenty participants where the CRF02_AG was the predominant strain (16, 80 %) were analyzed. NGS detected 25 mutations in the RT and PR genes, compared to 21 mutations by Sanger sequencing. Minority DRMs were detected at the prevalence of 55.0 % with NGS against 35 % DRMs by Sanger sequencing. One of the patients had eight different HIVDR variants, with two minority variants. These mutations were directed against PI (K20I and D30DN), NNRTI (Y181C, M23LM and V108I) and NRTI (K65R, M184I, and D67N). Conclusion: The study affirms the usefulness of genomic sequencing for drug resistance testing in HIV. It further shows that Sanger sequencing alone may not be adequate to detect mutations and that NGS capacity should be developed and deployed in the Ghanaian clinical settings for patients living with HIV.

5.
J Virol ; 98(8): e0065724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39007615

RESUMEN

RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Hurones , Variación Genética , Mutación , Animales , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/fisiología , Moquillo/virología , Células Vero , Chlorocebus aethiops , Genoma Viral , Adaptación Fisiológica/genética , Replicación Viral , Adaptación Biológica , Perros
6.
Microbiol Spectr ; 12(9): e0116424, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39078148

RESUMEN

Human parainfluenza virus (HPIV) causes respiratory infections, which are exacerbated in children and older people. Correct evaluation of viral characteristics is essential for the study of countermeasures. However, adaptation of viruses to cultured cells during isolation or propagation might select laboratory passage-associated mutations that modify the characteristics of the virus. It was previously reported that adaptation of HPIV3, but not other HPIVs, was avoided in human airway epithelia. To examine the influence of laboratory passage on the genomes of HPIV1-HPIV4, we evaluated the occurrence of mutations after passage in primary human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) culture and conventional cultured cells (Vero cells expressing the transmembrane protease, serine 2, and normal Vero cells). The occurrence of mutations was significantly lower in HBTEC-ALI than in conventional culture. In HBTEC-ALI culture, most of the mutations were silent or remained at low variant frequency, resulting in less impact on the viral consensus sequence. In contrast, passage in conventional culture induced or selected genetic mutations at high frequency with passage-associated unique substitutions. High mutagenesis of hemagglutinin-neuraminidase was commonly observed in all four HPIVs, and mutations even occurred in a single passage. In addition, in HPIV1 and HPIV2, mutations in the large protein were more frequent. These results indicate that passage in HBTEC-ALI culture is more suitable than conventional culture for maintaining the original characteristics of clinical isolates in all four HPIVs, which can help with the understanding of viral pathogenesis. IMPORTANCE: Adaptation of viruses to cultured cells can increase the risk of misinterpretation in virological characterization of clinical isolates. In human parainfluenza virus (HPIV) 3, it has been reported that the human airway epithelial and lung organoid models are preferable for the study of viral characteristics of clinical strains without mutations. Therefore, we analyzed clinical isolates of all four HPIVs for the occurrence of mutations after five laboratory passages in human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) or conventional culture. We found a high risk of hemagglutinin-neuraminidase mutagenesis in all four HPIVs in conventional cultured cells. In addition, in HPIV1 and HPIV2, mutations of the large protein were also more frequent in conventional cultured cells than in HBTEC-ALI culture. HBTEC-ALI culture was useful for maintaining the original sequence and characteristics of clinical isolates in all four HPIVs. The present study contributes to the understanding of HPIV pathogenesis and antiviral strategies.


Asunto(s)
Bronquios , Células Epiteliales , Mutación , Humanos , Chlorocebus aethiops , Células Vero , Bronquios/virología , Bronquios/citología , Animales , Células Epiteliales/virología , Tráquea/virología , Tráquea/citología , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/fisiología , Cultivo de Virus/métodos , Virus de la Parainfluenza 1 Humana/genética , Virus de la Parainfluenza 2 Humana/genética , Virus de la Parainfluenza 2 Humana/crecimiento & desarrollo , Línea Celular , Pase Seriado , Respirovirus/genética
7.
Viruses ; 16(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39066265

RESUMEN

Although a combination of immunoprophylaxis and antiviral therapy can effectively prevent mother-to-child transmission (MTCT) of hepatitis B virus (HBV), a considerable number of infants born to highly viremic mothers still develop occult HBV infection (OBI). To uncover the virological factor and risk predictor for OBI in infants, we found that the diversity and complexity of maternal HBV quasispecies in the case group were lower than those in the control group. Mutations with significant differences between the two groups were most enriched in the NTCPbd and PreC regions. Genetic distance at the amino-acid level of the PreC region, especially the combination of three amino-acid mutations in the PreC region, could strongly predict the risk of OBI in infants. HBV quasispecies in OBI infants were highly complex, and the non-synonymous substitutions were mainly found in the RT and HBsAg regions. The sK47E (rtQ55R) and sP49L mutations in OBI infants might contribute to OBI through inhibiting the production of HBV DNA and HBsAg, respectively. This study found the potential virological factors and risk predictors for OBI in infants born to highly viremic mothers, which might be helpful for controlling OBI in infants.


Asunto(s)
ADN Viral , Virus de la Hepatitis B , Hepatitis B , Transmisión Vertical de Enfermedad Infecciosa , Mutación , Cuasiespecies , Viremia , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/aislamiento & purificación , Femenino , Cuasiespecies/genética , Hepatitis B/virología , Hepatitis B/transmisión , ADN Viral/genética , Lactante , Embarazo , Adulto , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/sangre , Recién Nacido , Complicaciones Infecciosas del Embarazo/virología , Masculino , Madres , Genotipo
8.
Emerg Microbes Infect ; 13(1): 2368211, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38916498

RESUMEN

The evolution of SARS-CoV-2, the agent of COVID-19, has been remarkable for its high mutation potential, leading to the appearance of variants. Some mutations have never appeared in the published genomes, which represent consensus, or bona fide genomes. Here we tested the hypothesis that mutations that did not appear in consensus genomes were, in fact, as frequent as the mutations that appeared during the various epidemic episodes, but were not expressed because lethal. To identify these mutations, we analysed the genomes of 90 nasopharyngeal samples and the quasispecies determined by next-generation sequencing. Mutations observed in the quasispecies and not in the consensus genomes were considered to be lethal, what we called "outlaw" mutations. Among these mutations, we analysed the 21 most frequent. Eight of these "outlaws" were in the RNA polymerase and we were able to use a structural biology model and molecular dynamics simulations to demonstrate the functional incapacity of these mutated RNA polymerases. Three other mutations affected the spike, a major protein involved in the pathogenesis of COVID-19. Overall, by analysing the SARS-CoV-2 quasispecies obtained during sequencing, this method made it possible to identify "outlaws," showing areas that could potentially become the target of treatments.


Asunto(s)
COVID-19 , Genoma Viral , Mutación , Cuasiespecies , SARS-CoV-2 , Replicación Viral , SARS-CoV-2/genética , SARS-CoV-2/clasificación , Humanos , COVID-19/virología , Cuasiespecies/genética , Glicoproteína de la Espiga del Coronavirus/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Nasofaringe/virología , Simulación de Dinámica Molecular
9.
Influenza Other Respir Viruses ; 18(6): e13340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38890805

RESUMEN

BACKGROUND: Viral recombination that occurs by exchanging genetic materials between two viral genomes coinfecting the same host cells is associated with the emergence of new viruses with different virulence. Herein, we detected a patient coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants and identified various recombinants in the SARS-CoV-2 full-length spike gene using long-read and Sanger sequencing. METHODS: Samples from five patients in Japan with household transmission of coronavirus disease 2019 (COVID-19) were analyzed using molecular assays for detection and identification of SARS-CoV-2. Whole-genome sequencing was conducted using multiplex PCR with short-read sequencing. RESULTS: Among the five SARS-CoV-2-positive patients, the mutation-specific assay identified the Delta variant in three, the Omicron variant in one, and an undetermined in one. The undermined patient was identified as Delta using whole-genome sequencing, but samples showed a mixed population of Delta and Omicron variants. This patient was analyzed for viral quasispecies by long-read and Sanger sequencing using a full-length spike gene amplicon. In addition to the Delta and Omicron sequences, the viral quasispecies analysis identified nine different genetic recombinant sequences with various breakpoints between Delta and Omicron sequences. The nine detected recombinant sequences in the spike gene showed over 99% identity with viruses that were detected during the Delta and Omicron cocirculation period from the United States and Europe. CONCLUSIONS: This study demonstrates that patients coinfected with different SARS-CoV-2 variants can generate various viral recombinants and that various recombinant viruses may be produced during the cocirculation of different variants.


Asunto(s)
COVID-19 , Coinfección , Genoma Viral , Recombinación Genética , SARS-CoV-2 , Secuenciación Completa del Genoma , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , COVID-19/complicaciones , Coinfección/virología , Genoma Viral/genética , Glicoproteína de la Espiga del Coronavirus/genética , Masculino , Japón , Femenino , Filogenia , Mutación , Persona de Mediana Edad
10.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767624

RESUMEN

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Asunto(s)
Bombyx , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nanoporos , Nucleopoliedrovirus , Polimorfismo de Nucleótido Simple , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/clasificación , Nucleopoliedrovirus/aislamiento & purificación , Animales , Secuenciación de Nanoporos/métodos , Bombyx/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma Viral
11.
Microorganisms ; 12(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792840

RESUMEN

The repeated failure to treat patients chronically infected with hepatitis E (HEV) and C (HCV) viruses, despite the absence of resistance-associated substitutions (RAS), particularly in response to prolonged treatments with the mutagenic agents of HEV, suggests that quasispecies structure may play a crucial role beyond single point mutations. Quasispecies structured in a flat-like manner (referred to as flat-like) are considered to possess high average fitness, occupy a significant fraction of the functional genetic space of the virus, and exhibit a high capacity to evade specific or mutagenic treatments. In this paper, we studied HEV and HCV samples using high-depth next-generation sequencing (NGS), with indices scoring the different properties describing flat-like quasispecies. The significance of these indices was demonstrated by comparing the values obtained from these samples with those from acute infections caused by respiratory viruses (betacoronaviruses, enterovirus, respiratory syncytial viruses, and metapneumovirus). Our results revealed that flat-like quasispecies in HEV and HCV chronic infections without RAS are characterized by numerous low-frequency haplotypes with no dominant one. Surprisingly, these low-frequency haplotypes (at the nucleotide level) exhibited a high level of synonymity, resulting in much lower diversity at the phenotypic level. Currently, clinical approaches for managing flat-like quasispecies are lacking. Here, we propose methods to identifying flat-like quasispecies, which represents an essential initial step towards exploring alternative treatment protocols for viruses resistant to conventional therapies.

12.
Viruses ; 16(5)2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38793592

RESUMEN

In quasispecies diversity studies, the comparison of two samples of varying sizes is a common necessity. However, the sensitivity of certain diversity indices to sample size variations poses a challenge. To address this issue, rarefaction emerges as a crucial tool, serving to normalize and create fairly comparable samples. This study emphasizes the imperative nature of sample size normalization in quasispecies diversity studies using next-generation sequencing (NGS) data. We present a thorough examination of resampling schemes using various simple hypothetical cases of quasispecies showing different quasispecies structures in the sense of haplotype genomic composition, offering a comprehensive understanding of their implications in general cases. Despite the big numbers implied in this sort of study, often involving coverages exceeding 100,000 reads per sample and amplicon, the rarefaction process for normalization should be performed with repeated resampling without replacement, especially when rare haplotypes constitute a significant fraction of interest. However, it is noteworthy that different diversity indices exhibit distinct sensitivities to sample size. Consequently, some diversity indicators may be compared directly without normalization, or instead may be resampled safely with replacement.


Asunto(s)
Variación Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Cuasiespecies , Virus , Cuasiespecies/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Genoma Viral , Humanos , Genómica/métodos , Filogenia , Tamaño de la Muestra
13.
J Med Virol ; 96(5): e29642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38708812

RESUMEN

Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Citidina/análogos & derivados , Genoma Viral , Hidroxilaminas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , Antivirales/uso terapéutico , Antivirales/farmacología , Hidroxilaminas/farmacología , Hidroxilaminas/uso terapéutico , Masculino , Femenino , Estudios de Casos y Controles , Persona de Mediana Edad , Citidina/uso terapéutico , Citidina/farmacología , Anciano , Adulto , Secuenciación Completa del Genoma , Variación Genética , Uridina/farmacología , COVID-19/virología , Mutación
14.
Virus Evol ; 10(1): veae019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765465

RESUMEN

Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing, which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence polymerase-chain reaction (PCR) amplicons derived from cDNA templates tagged with unique molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR. The use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Production of highly accurate sequences from the large datasets produced from SMRT-UMI sequencing is facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline). PORPIDpipeline automatically filters and parses circular consensus reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination, heteroduplex formation, or early cycle PCR errors. The optimized SMRT-UMI sequencing and PORPIDpipeline methods presented here represent a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus quasispecies in a virus transmitter-recipient pair of individuals.

15.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791519

RESUMEN

Our aim was to develop an accurate, highly sensitive method for HBV genotype determination and detection of genotype mixtures. We examined the preS and 5' end of the HBV X gene (5X) regions of the HBV genome using next-generation sequencing (NGS). The 1852 haplotypes obtained were subjected to genotyping via the Distance-Based discrimination method (DB Rule) using two sets of 95 reference sequences of genotypes A-H. In clinical samples from 125 patients, the main genotypes were A, D, F and H in Caucasian, B and C in Asian and A and E in Sub-Saharan patients. Genotype mixtures were identified in 28 (22.40%) cases, and potential intergenotypic recombination was observed in 29 (23.20%) cases. Furthermore, we evaluated sequence conservation among haplotypes classified into genotypes A, C, D, and E by computing the information content. The preS haplotypes exhibited limited shared conserved regions, whereas the 5X haplotypes revealed two groups of conserved regions across the genotypes assessed. In conclusion, we developed an NGS-based HBV genotyping method utilizing the DB Rule for genotype classification. We identified two regions conserved across different genotypes at 5X, offering promising targets for RNA interference-based antiviral therapies.


Asunto(s)
Genotipo , Haplotipos , Virus de la Hepatitis B , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de la Hepatitis B/genética , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hepatitis B/virología , Hepatitis B/genética , Técnicas de Genotipaje/métodos , Secuencia Conservada , Coinfección/virología , Genoma Viral , Masculino , Femenino , Filogenia , ADN Viral/genética , Adulto
16.
Front Microbiol ; 15: 1358258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559344

RESUMEN

Introduction: SARS-CoV-2 isolates of a given clade may contain low frequency genomes that encode amino acids or deletions which are typical of a different clade. Methods: Here we use high resolution ultra-deep sequencing to analyze SARS-CoV-2 mutant spectra. Results: In 6 out of 11 SARS-CoV-2 isolates from COVID-19 patients, the mutant spectrum of the spike (S)-coding region included two or more amino acids or deletions, that correspond to discordant viral clades. A similar observation is reported for laboratory populations of SARS-CoV-2 USA-WA1/2020, following a cell culture infection in the presence of remdesivir, ribavirin or their combinations. Moreover, some of the clade-discordant genome residues are found in the same haplotype within an amplicon. Discussion: We evaluate possible interpretations of these findings, and reviewed precedents for rapid selection of genomes with multiple mutations in RNA viruses. These considerations suggest that intra-host evolution may be sufficient to generate minority sequences which are closely related to sequences typical of other clades. The results provide a model for the origin of variants of concern during epidemic spread─in particular Omicron lineages─that does not require prolonged infection, involvement of immunocompromised individuals, or participation of intermediate, non-human hosts.

17.
Br J Pharmacol ; 181(15): 2636-2654, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616133

RESUMEN

BACKGROUND AND PURPOSE: There is a need for effective anti-COVID-19 treatments, mainly for individuals at risk of severe disease such as the elderly and the immunosuppressed. Drug repositioning has proved effective in identifying drugs that can find a new application for the control of coronavirus disease, in particular COVID-19. The purpose of the present study was to find synergistic antiviral combinations for COVID-19 based on lethal mutagenesis. EXPERIMENTAL APPROACH: The effect of combinations of remdesivir and ribavirin on the infectivity of SARS-CoV-2 in cell culture has been tested. Viral populations were monitored by ultra-deep sequencing, and the decrease of infectivity as a result of the treatment was measured. KEY RESULTS: Remdesivir and ribavirin exerted a synergistic inhibitory activity against SARS-CoV-2, quantified both by CompuSyn (Chou-Talalay method) and Synergy Finder (ZIP-score model). In serial passage experiments, virus extinction was readily achieved with remdesivir-ribavirin combinations at concentrations well below their cytotoxic 50 value, but not with the drugs used individually. Deep sequencing of treated viral populations showed that remdesivir, ribavirin, and their combinations evoked significant increases of the number of viral mutations and haplotypes, as well as modification of diversity indices that characterize viral quasi-species. CONCLUSION AND IMPLICATIONS: SARS-CoV-2 extinction can be achieved by synergistic combination treatments based on lethal mutagenesis. In addition, the results offer prospects of triple drug treatments for effective SARS-CoV-2 suppression.


Asunto(s)
Adenosina Monofosfato , Alanina , Antivirales , Sinergismo Farmacológico , Ribavirina , SARS-CoV-2 , Alanina/análogos & derivados , Alanina/farmacología , Ribavirina/farmacología , Antivirales/farmacología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , SARS-CoV-2/efectos de los fármacos , Chlorocebus aethiops , Células Vero , Animales , Humanos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología
18.
Int J Med Microbiol ; 315: 151619, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564936

RESUMEN

BACKGROUND: To analysis of quasispecies (QS) changes and high-frequency mutations in the BCP/PreC/C region of patients at different phases of hepatitis B virus (HBV) infection and provides novel biomarkers for the diagnosis of chronic hepatitis B (CHB) patients. METHODS: With the application of next-generation sequencing technology, we were able to sequence the HBV BCP/PreC/C regions in 40 patients, each at different phases of the HBV infection. The heterogeneity of QS and the frequency of mutations were calculated using MEGA 7 software. RESULTS: Our results show that the complexity and diversity of the BCP/PreC/C QS in HBeAg-positive CHB patients are significantly higher than those in HBeAg-positive chronic infection patients, while HBeAg-negative chronic infection patients had significantly higher QS complexity and diversity than HBeAg-negative CHB patients. In addition, HBeAg-negative patients showed reduced complexity but increased diversity compared with HBeAg-positive patients. Receiver operating characteristic curves showed that G1764A, C2102T, dN and complexity of QS could be used as potential biomarkers for diagnosing HBeAg-positive CHB, while the A2189C, dS and complexity of QS could be used as potential biomarkers for diagnosing HBeAg-negative chronic hepatitis. Finally, our study also found that G1896A and A2159G may be hotspot mutations affecting HBeAg seroconversion. CONCLUSION: Our research elucidates the evolution of HBV by analyzing QS heterogeneity and mutation patterns, offering novel serum biomarkers for enhancing clinical diagnosis and disease prognosis. This comprehensive approach sheds light on the intricate dynamics of HBV progression and paves the way for more precise medical interventions.


Asunto(s)
ADN Viral , Antígenos e de la Hepatitis B , Virus de la Hepatitis B , Hepatitis B Crónica , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Cuasiespecies , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hepatitis B Crónica/virología , Hepatitis B Crónica/sangre , Cuasiespecies/genética , Masculino , Femenino , Antígenos e de la Hepatitis B/sangre , Adulto , ADN Viral/genética , ADN Viral/sangre , Persona de Mediana Edad , Adulto Joven , Biomarcadores/sangre , Genotipo
20.
Viruses ; 16(3)2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38543811

RESUMEN

During the COVID-19 pandemic, immunosuppressed patients showed prolonged SARS-CoV-2 infections, with several studies reporting the accumulation of mutations in the viral genome. The weakened immune system present in these individuals, along with the effect of antiviral therapies, are thought to create a favourable environment for intra-host viral evolution and have been linked to the emergence of new viral variants which strongly challenged containment measures and some therapeutic treatments. To assess whether impaired immunity could lead to the increased instability of viral genomes, longitudinal nasopharyngeal swabs were collected from eight immunocompromised patients and fourteen non-immunocompromised subjects, all undergoing SARS-CoV-2 infection. Intra-host viral evolution was compared between the two groups through deep sequencing, exploiting a probe-based enrichment method to minimise the possibility of artefactual mutations commonly generated in amplicon-based methods, which heavily rely on PCR amplification. Although, as expected, immunocompromised patients experienced significantly longer infections, the acquisition of novel intra-host viral mutations was similar between the two groups. Moreover, a thorough analysis of viral quasispecies showed that the variability of viral populations in the two groups is comparable not only at the consensus level, but also when considering low-frequency mutations. This study suggests that a compromised immune system alone does not affect SARS-CoV-2 within-host genomic variability.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Mutación , Cuasiespecies
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA