Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(17): 5125-5131, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639405

RESUMEN

We report a study of thickness-dependent interband and intraband magnetic breakdown by thermoelectric quantum oscillations in ZrSiSe nanoplates. Under high magnetic fields of up to 30 T, quantum oscillations arising from degenerated hole pockets were observed in thick ZrSiSe nanoplates. However, when decreasing the thickness, plentiful multifrequency quantum oscillations originating from hole and electron pockets are captured. These multiple frequencies can be explained by the emergent interband magnetic breakdown enclosing individual hole and electron pockets and intraband magnetic breakdown within spin-orbit coupling (SOC) induced saddle-shaped electron pockets, resulting in the enhanced contribution to thermal transport in thin ZrSiSe nanoplates. These experimental frequencies agree well with theoretical calculations of the intriguing tunneling processes. Our results introduce a new member of magnetic breakdown to the field and open up a dimension for modulating magnetic breakdown, which holds fundamental significance for both low-dimensional topological materials and the physics of magnetic breakdown.

2.
J Phys Condens Matter ; 36(24)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38437730

RESUMEN

The three-dimensional magneto-conductivity tensor was derived in a gauge invariant form based on the Kubo formula considering quantum effects under a magnetic field, such as the Landau quantization and quantum oscillations. We analytically demonstrated that the quantum formula of the magneto-conductivity can be obtained by adding a quantum oscillation factor to the classical formula. This result establishes the quantum-classical correspondence, which has long been missing in magnetotransport phenomena. Moreover, we found dissipative-to-dissipationless crossover in the Hall conductivity by paying special attention to the analytic properties of the thermal Green's function. Finally, by calculating the magnetoresistance of semimetals, we identified a phase shift in quantum oscillation originating from the dissipationless transport predominant at high fields.

3.
Nano Lett ; 23(21): 9726-9732, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37862439

RESUMEN

Quantum confinement structures are building blocks of quantum devices in fundamental physics exploration and technological applications. In this work, we fabricate dual-gated bilayer graphene Fabry-Pérot quantum Hall interferometers employing two different gating strategies and conduct finite element simulations to understand the electrostatics of the confinement structures and to guide device design and fabrication. We observe two types of resistance oscillations arising from the charging of quantum dots formed inside the interferometers. We obtain the size, location, and charging energy of the dots by measuring the dependence of the oscillations on the magnetic field, gate voltages, and dc bias. We analyze and discuss the origin of the quantum dots and their impact on quantum Hall edge state backscattering and interference. Insights gained in these studies shed light on the construction of van der Waals quantum confinement devices.

4.
J Phys Condens Matter ; 35(40)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37369230

RESUMEN

Quantum oscillations (QOs) in magnetic torque and electrical resistivity were measured to investigate the electronic structure ofß-ReO2, a candidate hourglass nodal chain (NC) metal (Dirac loop chain metal). All the de Haas-van Alphen oscillation branches measured at 30 mK in magnetic fields of up to 17.5 T were consistent with first-principles calculations predicting four Fermi surfaces (FSs). The small-electron FS of the four FSs exhibited a very small cyclotron mass, 0.059 times that of the free electrons, which is likely related to the linear dispersion of the energy band. The consistency between the QO results and band calculations indicates the presence of the hourglass NC predicted forß-ReO2in the vicinity of the Fermi energy.

5.
J Phys Condens Matter ; 35(21)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36898156

RESUMEN

Cuprate superconductors display unusual features in bothkspace and real space as the superconductivity is suppressed-a broken Fermi surface, charge density wave, and pseudogap. Contrarily, recent transport measurements on cuprates under high magnetic fields report quantum oscillations (QOs), which imply rather a usual Fermi liquid behavior. To settle the disagreement, we investigated Bi2Sr2CaCu2O8+δunder a magnetic field in an atomic scale. A particle-hole (p-h) asymmetrically dispersing density of states (DOSs) modulation was found at the vortices on a slightly underdoped sample, while on a highly underdoped sample, no trace of the vortex was found even at 13 T. However, a similar p-h asymmetric DOS modulation persisted in almost an entire field of view. From this observation, we infer an alternative explanation of the QO results by providing a unifying picture where the aforementioned seemingly conflicting evidence from angle-resolved photoemission spectroscopy, spectroscopic imaging scanning tunneling microscopy, and magneto-transport measurements can be understood solely in terms of the DOS modulations.

6.
J Phys Condens Matter ; 35(24)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36940480

RESUMEN

We report the synthesis of transition-metal-doped ferromagnetic elemental single-crystal semiconductors with quantum oscillations using the physical vapor transport method. The 7.7 atom% Cr-doped Te crystals (Cr:Te) show ferromagnetism, butterfly-like negative magnetoresistance in the low temperature (<3.8 K) and low field (<0.15 T) region, and high Hall mobility, e.g. 1320 cm2V-1s-1at 30 K and 350 cm2V-1s-1at 300 K, implying that Cr:Te crystals are ferromagnetic elemental semiconductors. WhenB// [001] // I, the maximum negative MR is ∼-27% atT= 20 K andB= 8 T. In the low temperature semiconducting region, Cr:Te crystals show strong discrete scale invariance dominated logarithmic quantum oscillations when the direction of the magnetic fieldBis parallel to the [100] crystallographic direction (B// [100]) and show Landau quantization dominated Shubnikov-de Haas oscillations forB// [210] direction, which suggests the broken rotation symmetry of the Fermi pockets in the Cr:Te crystals. The findings of coexistence of multiple quantum oscillations and ferromagnetism in such an elemental quantum material may inspire more study of narrow bandgap semiconductors with ferromagnetism and quantum phenomena.

7.
ACS Nano ; 17(5): 4913-4921, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36802534

RESUMEN

Exploring the topological surface state of a topological semimetal by the transport technique has always been a big challenge because of the overwhelming contribution of the bulk state. In this work, we perform systematic angular-dependent magnetotransport measurements and electronic band calculations on SnTaS2 crystals, a layered topological nodal-line semimetal. Distinct Shubnikov-de Haas quantum oscillations were observed only in SnTaS2 nanoflakes when the thickness was below about 110 nm, and the oscillation amplitudes increased significantly with decreasing thickness. By analysis of the oscillation spectra, together with the theoretical calculation, a two-dimensional and topological nontrivial nature of the surface band is unambiguously identified, providing direct transport evidence of drumhead surface state for SnTaS2. Our comprehensive understanding of the Fermi surface topology of the centrosymmetric superconductor SnTaS2 is crucial for further research on the interplay of superconductivity and nontrivial topology.

8.
Nano Lett ; 22(18): 7659-7666, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069426

RESUMEN

Bi2O2Te has the smallest effective mass and preferable carrier mobility in the Bi2O2X (X = S, Se, Te) family. However, compared to the widely explored Bi2O2Se, the studies on Bi2O2Te are very rare, probably attributed to the lack of efficient ways to achieve the growth of ultrathin films. Herein, ultrathin Bi2O2Te crystals were successfully synthesized by a trace amount of O2-assisted chemical vapor deposition (CVD) method, enabling the observation of ultrahigh low-temperature Hall mobility of >20 000 cm2 V-1 s-1, pronounced Shubnikov-de Haas quantum oscillations, and small effective mass of ∼0.10 m0. Furthermore, few nm thick CVD-grown Bi2O2Te crystals showed high room-temperature Hall mobility (up to 500 cm2 V-1 s-1) both in nonencapsulated and top-gated device configurations and preserved the intrinsic semiconducting behavior with Ion/Ioff ∼ 103 at 300 K and >106 at 80 K. Our work uncovers the veil of semiconducting Bi2O2Te with high mobility and brings new blood into Bi2O2X family.


Asunto(s)
Bismuto , Enfermedades Cardiovasculares , Bismuto/química , Gases/química , Humanos , Tamaño de la Partícula , Telurio/química
9.
J Phys Condens Matter ; 34(42)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35940168

RESUMEN

PtGa is a topological semimetal with giant spin-split Fermi arcs. Here, we report on angular-dependent de Haas-van Alphen (dHvA) measurements combined with band-structure calculations to elucidate the details of the bulk Fermi surface of PtGa. The strong spin-orbit coupling leads to eight bands crossing the Fermi energy that form a multitude of Fermi surfaces with closed extremal orbits and results in very rich dHvA spectra. The large number of experimentally observed dHvA frequencies make the assignment to the equally large number of calculated dHvA orbits challenging. Nevertheless, we find consistency between experiment and calculations verifying the topological character with maximal Chern number of the spin-split Fermi surface.

10.
J Phys Condens Matter ; 34(42)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35961292

RESUMEN

Anisotropic transport, Shubnikov-de Haas (SdH), and de Haas-van Alphen (dHvA) quantum oscillations studies are reported on a high-quality CoSi single crystal grown by the Czochralski method. Temperature-dependent resistivities indicate the dominating electron-electron scattering. Magnetoresistance (MR) at 2 K reaches 610% forI ∥ [111]andB ∥ [011-], whereas it is 500% forI ∥ [011-] andB ∥ [111]. A negative slope in field-dependent Hall resistivity suggests electrons are the majority carriers. The carrier concentration extracted from Hall conductivity indicates no electron-hole compensation. In 3D CoSi, the electron transport lifetime is found to be approximately in the same order as the quantum lifetime, whereas in 2Delectron gas the long-range scattering drives the transport life much larger than the quantum lifetime. From MR and Hall SdH oscillations, the effective masses and Dingle temperatures have been calculated. The dHvA oscillation reveals three frequencies at 18 T (γ), 558 T (α) and 663 T (ß), whereas, SdH oscillation results in only two frequenciesαandß. Theγfrequency observed in dHvA oscillation is a tiny hole pocket at the Γ point.

11.
ACS Nano ; 15(12): 20013-20019, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34843211

RESUMEN

The massless nature of Dirac Fermions produces large energy gaps between Landau levels (LLs), which is promising for topological devices. While the energy gap between the zeroth and first LLs reaches 36 meV in a magnetic field of 1 T in graphene, exploiting the quantum Hall effect at room temperature requires large magnetic fields (∼30 T) to overcome the energy level broadening induced by charge inhomogeneities in the device. Here, we report a way to use the robust quantum oscillations of Dirac Fermions in a single-defect resonant transistor, which is based on local tunneling through a thin (∼1.4 nm) hexagonal boron nitride (h-BN) between lattice-orientation-aligned graphene layers. A single point defect in the h-BN, selected by the orientation-tuned graphene layers, probes local LLs in its proximity, minimizing the energy broadening of the LLs by charge inhomogeneity at a moderate magnetic field and ambient conditions. Thus, the resonant tunneling between lattice-orientation-aligned graphene layers highlights the potential to spectroscopically locate the atomic defects in the h-BN, which contributes to the study on electrically tunable single photon source via defect states in h-BN.

12.
J Phys Condens Matter ; 34(3)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34598178

RESUMEN

We probe quantum oscillations in nodal line semimetals (NLSM) by considering an NLSM continuum model under strong magnetic field and report the characteristics of the Landau level (LL) spectra and the fluctuations in the Fermi level as the field in a direction perpendicular to the nodal plane is varied through. Based on the results on parallel magnetization, we demonstrate the growth of quantum oscillation with field strength as well as its constancy in period when plotted against 1/B. We find that the density of states (DOS) which show series of peaks in succession, witness bifurcation of those peaks due to Zeeman effect. For field normal to nodal plane, such bifurcations are discernible only if the electron effective mass is considerably smaller than its free value, which usually happens in these systems. Though a reduced effective massm* causes the Zeeman splitting to become small compared to LL spacings, experimental results indicate a manifold increase in the Landegfactor which again amplifies the Zeeman contribution. We also consider magnetic field in the nodal plane for which the DOS peaks do not repeat periodically with energy anymore. The spectra become more spread out and the Zeeman splittings become less prominent. We find the low energy topological regime, that appears with such in-plane field set up, to shrink further with reducedm* values. However, such topological regime can be stretched out in case there are smaller Fermi velocities for electrons in the direction normal to the nodal plane.

13.
Adv Mater ; 33(41): e2102107, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34463975

RESUMEN

An effective way of manipulating 2D surface states in magnetic topological insulators may open a new route for quantum technologies based on the quantum anomalous Hall effect. The doping-dependent evolution of the electronic band structure in the topological insulator Sb2- x Vx Te3 (0 ≤ x ≤ 0.102) thin films is studied by means of electrical transport. Sb2- x Vx Te3 thin films were prepared by molecular beam epitaxy, and Shubnikov-de Hass (SdH) oscillations are observed in both the longitudinal and transverse transport channels. Doping with the 3d element, vanadium, induces long-range ferromagnetic order with enhanced SdH oscillation amplitudes. The doping effect is systematically studied in various films depending on thickness and bottom gate voltage. The angle-dependence of the SdH oscillations reveals their 2D nature, linking them to topological surface states as their origin. Furthermore, it is shown that vanadium doping can efficiently modify the band structure. The tunability by doping and the coexistence of the surface states with ferromagnetism render Sb2- x Vx Te3 thin films a promising platform for energy band engineering. In this way, topological quantum states may be manipulated to crossover from quantum Hall effect to quantum anomalous Hall effect, which opens an alternative route for the design of quantum electronics and spintronics.

14.
Proc Natl Acad Sci U S A ; 118(29)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266947

RESUMEN

With the emergence of Dirac fermion physics in the field of condensed matter, magnetic quantum oscillations (MQOs) have been used to discern the topology of orbits in Dirac materials. However, many previous researchers have relied on the single-orbit Lifshitz-Kosevich (LK) formula, which overlooks the significant effect of degenerate orbits on MQOs. Since the single-orbit LK formula is valid for massless Dirac semimetals with small cyclotron masses, it is imperative to generalize the method applicable to a wide range of Dirac semimetals, whether massless or massive. This report demonstrates how spin-degenerate orbits affect the phases in MQOs of three-dimensional massive Dirac semimetal, NbSb2 With varying the direction of the magnetic field, an abrupt π phase shift is observed due to the interference between the spin-degenerate orbits. We investigate the effect of cyclotron mass on the π phase shift and verify its close relation to the phase from the Zeeman coupling. We find that the π phase shift occurs when the cyclotron mass is half of the electron mass, indicating the effective spin gyromagnetic ratio as g s = 2. Our approach is not only useful for analyzing MQOs of massless Dirac semimetals with a small cyclotron mass but also can be used for MQOs in massive Dirac materials with degenerate orbits, especially in topological materials with a sufficiently large cyclotron mass. Furthermore, this method provides a useful way to estimate the precise g s value of the material.

15.
Nano Lett ; 21(11): 4887-4893, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-33834787

RESUMEN

In a topological semimetal with Dirac or Weyl points, the bulk-boundary correspondence principle predicts a gapless edge mode if the essential symmetry is still preserved at the surface. The detection of such topological surface state has been considered as the fingerprint prove for crystals with nontrivial topological bulk band. On the contrary, it has been proposed that even with symmetry broken at the surface, a new surface band can emerge in nonsymmorphic topological semimetals. The symmetry reduction at the surface lifts the bulk band degeneracies and produces an unusual "floating" surface band with trivial topology. Here, we first report quantum transport probing to ZrSiSe thin flakes and directly reveal transport signatures of this new surface state. Remarkably, though topologically trivial, such a surface band exhibits substantial two-dimensional Shubnikov-de Haas quantum oscillations with high mobility, which signifies a new protection mechanism and may open applications for quantum computing and spintronic devices.

16.
J Phys Condens Matter ; 33(22)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33618334

RESUMEN

Nodal line semimetals (NLSM) exhibit interesting quantum oscillation (QO) characteristics when acted upon by a strong magnetic field. We study the combined effect of strong direct and alternating magnetic field, perpendicular to the nodal plane in an untilted NLSM in order to probe the behavior of the low lying Landau level states that can periodically become gapless for suitably chosen field parameters. The oscillatory field variation, as opposed to a steady one, has interesting impact on the QO phenomena with the Landau tubes crossing the Fermi surface extremally two times per cycle. Furthermore, the low energy modes can witness Landau-Zener like transitions between valence and conduction band providing further routes to conduction. We discuss such transition phenomena following the framework of adiabatic-impulse approximation for slow quenches. Next we also investigate the effect of oscillating magnetic field acting parallel to the nodal loop where topologically nontrivial magnetic oscillations at low energies can be witnessed. Therefore, with proper parameters chosen, one can engineer topological transitions to occur periodically in such systems as the oscillating field is swept through its cycles.

17.
Nano Lett ; 19(3): 1736-1742, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30720286

RESUMEN

Two-dimensional transition metal dichalcogenides (TMDCs) are recently emerged electronic systems with various novel properties, such as spin-valley locking, circular dichroism, valley Hall effect, and superconductivity. The reduced dimensionality and large effective masses further produce unconventional many-body interaction effects. Here we reveal strong interaction effects in the conduction band of MoS2 by transport experiment. We study the massive Dirac electron Landau levels (LL) in high-quality MoS2 samples with field-effect mobilities of 24 000 cm2/(V·s) at 1.2 K. We identify the valley-resolved LLs and low-lying polarized LLs using the Lifshitz-Kosevitch formula. By further tracing the LL crossings in the Landau fan diagram, we unambiguously determine the density-dependent valley susceptibility and the interaction enhanced g-factor from 12.7 to 23.6. Near integer ratios of Zeeman-to-cyclotron energies, we discover LL anticrossings due to the formation of quantum Hall Ising ferromagnets, the valley polarizations of which appear to be reversible by tuning the density or an in-plane magnetic field. Our results provide evidence for many-body interaction effects in the conduction band of MoS2 and establish a fertile ground for exploring strongly correlated phenomena of massive Dirac electrons.

18.
Proc Natl Acad Sci U S A ; 114(10): 2468-2473, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223488

RESUMEN

Whereas the discovery of Dirac- and Weyl-type excitations in electronic systems is a major breakthrough in recent condensed matter physics, finding appropriate materials for fundamental physics and technological applications is an experimental challenge. In all of the reported materials, linear dispersion survives only up to a few hundred millielectronvolts from the Dirac or Weyl nodes. On the other hand, real materials are subject to uncontrolled doping during preparation and thermal effect near room temperature can hinder the rich physics. In ZrSiS, angle-resolved photoemission spectroscopy measurements have shown an unusually robust linear dispersion (up to [Formula: see text]2 eV) with multiple nondegenerate Dirac nodes. In this context, we present the magnetotransport study on ZrSiS crystal, which represents a large family of materials (WHM with W = Zr, Hf; H = Si, Ge, Sn; M = O, S, Se, Te) with identical band topology. Along with extremely large and nonsaturating magnetoresistance (MR), [Formula: see text]1.4 [Formula: see text] 105% at 2 K and 9 T, it shows strong anisotropy, depending on the direction of the magnetic field. Quantum oscillation and Hall effect measurements have revealed large hole and small electron Fermi pockets. A nontrivial [Formula: see text] Berry phase confirms the Dirac fermionic nature for both types of charge carriers. The long-sought relativistic phenomenon of massless Dirac fermions, known as the Adler-Bell-Jackiw chiral anomaly, has also been observed.

19.
Nanoscale Res Lett ; 10(1): 470, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26637262

RESUMEN

It is shown that at low temperatures, quantum oscillations of nanoscale structural inhomogeneities (the vertical Bloch line and the Bloch point) occur in the domain walls of cylindrical magnetic domains formed in a uniaxial magnetic film with strong magnetic anisotropy. The conditions for the excitation of these oscillations are determined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA