Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 166: 107549, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37839222

RESUMEN

To address the scarcity and class imbalance of abnormal electrocardiogram (ECG) databases, which are crucial in AI-driven diagnostic tools for potential cardiovascular disease detection, this study proposes a novel quantum conditional generative adversarial algorithm (QCGAN-ECG) for generating abnormal ECG signals. The QCGAN-ECG constructs a quantum generator based on patch method. In this method, each sub-generator generates distinct features of abnormal heartbeats in different segments. This patch-based generative algorithm conserves quantum resources and makes QCGAN-ECG practical for near-term quantum devices. Additionally, QCGAN-ECG introduces quantum registers as control conditions. It encodes information about the types and probability distributions of abnormal heartbeats into quantum registers, rendering the entire generative process controllable. Simulation experiments on Pennylane demonstrated that the QCGAN-ECG could generate completely abnormal heartbeats with an average accuracy of 88.8%. Moreover, the QCGAN-ECG can accurately fit the probability distribution of various abnormal ECG data. In the anti-noise experiments, the QCGAN-ECG showcased outstanding robustness across various levels of quantum noise interference. These results demonstrate the effectiveness and potential applicability of the QCGAN-ECG for generating abnormal ECG signals, which will further promote the development of AI-driven cardiac disease diagnosis systems. The source code is available at github.com/VanSWK/QCGAN_ECG.

2.
Entropy (Basel) ; 25(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37510037

RESUMEN

Adversarial transfer learning is a machine learning method that employs an adversarial training process to learn the datasets of different domains. Recently, this method has attracted attention because it can efficiently decouple the requirements of tasks from insufficient target data. In this study, we introduce the notion of quantum adversarial transfer learning, where data are completely encoded by quantum states. A measurement-based judgment of the data label and a quantum subroutine to compute the gradients are discussed in detail. We also prove that our proposal has an exponential advantage over its classical counterparts in terms of computing resources such as the gate number of the circuits and the size of the storage required for the generated data. Finally, numerical experiments demonstrate that our model can be successfully trained, achieving high accuracy on certain datasets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA