Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2825: 309-331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913318

RESUMEN

Across eukaryotes, genome stability is essential for normal cell function, physiology, and species survival. Aberrant expression of key genes or exposure to genotoxic agents can have detrimental effects on genome stability and contribute to the development of various diseases, including cancer. Chromosome instability (CIN), or ongoing changes in chromosome complements, is a frequent form of genome instability observed in cancer and is a driver of genetic and cell-to-cell heterogeneity that can be rapidly detected and quantitatively assessed using surrogate markers of CIN. For example, single cell quantitative imaging microscopy (QuantIM) can be used to simultaneously identify changes in nuclear areas and micronucleus formation. While changes in nuclear areas are often associated with large-scale changes in chromosome complements (i.e., ploidy), micronuclei are small extra-nuclear bodies found outside the primary nucleus that have previously been employed as a measure of genotoxicity of test compounds. Here, we present a facile QuantIM approach that allows for the rapid assessment and quantification of CIN associated phenotypes and genotoxicity. First, we provide protocols to optimize and execute CIN and genotoxicity assays. Secondly, we present the critical imaging settings, optimization steps, downstream statistical analyses, and data visualization strategies employed to obtain high quality and robust data. These approaches can be easily applied to assess the prevalence of CIN associated phenotypes and genotoxic stress for a myriad of experimental and clinical contexts ranging from direct tests to large-scale screens of various genetic contexts (i.e., aberrant gene expression) or chemical compounds. In summary, this QuantIM approach facilitates the identification of novel CIN genes and/or genotoxic agents that will provide greater insight into the aberrant genes and pathways underlying CIN and genotoxicity.


Asunto(s)
Inestabilidad Cromosómica , Daño del ADN , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Microscopía/métodos , Pruebas de Mutagenicidad/métodos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Mutágenos/toxicidad , Pruebas de Micronúcleos/métodos
2.
Cells ; 11(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496990

RESUMEN

Despite the high morbidity and mortality rates associated with colorectal cancer (CRC), the underlying molecular mechanisms driving CRC development remain largely uncharacterized. Chromosome instability (CIN), or ongoing changes in chromosome complements, occurs in ~85% of CRCs and is a proposed driver of cancer development, as the genomic changes imparted by CIN enable the acquisition of karyotypes that are favorable for cellular transformation and the classic hallmarks of cancer. Despite these associations, the aberrant genes and proteins driving CIN remain elusive. SKP2 encodes an F-box protein, a variable subunit of the SKP1-CUL1-F-box (SCF) complex that selectively targets proteins for polyubiquitylation and degradation. Recent data have identified the core SCF complex components (SKP1, CUL1, and RBX1) as CIN genes; however, the impact reduced SKP2 expression has on CIN, cellular transformation, and oncogenesis remains unknown. Using both short- small interfering RNA (siRNA) and long-term (CRISPR/Cas9) approaches, we demonstrate that diminished SKP2 expression induces CIN in both malignant and non-malignant colonic epithelial cell contexts. Moreover, temporal assays reveal that reduced SKP2 expression promotes cellular transformation, as demonstrated by enhanced anchorage-independent growth. Collectively, these data identify SKP2 as a novel CIN gene in clinically relevant models and highlight its potential pathogenic role in CRC development.


Asunto(s)
Transformación Celular Neoplásica , Células Epiteliales , Inestabilidad Genómica , Proteínas Quinasas Asociadas a Fase-S , Humanos , Transformación Celular Neoplásica/genética , Proteínas F-Box , Proteínas Quinasas Asociadas a Fase-S/genética
3.
Cancers (Basel) ; 13(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801331

RESUMEN

Chromosome instability (CIN) is an enabling feature of oncogenesis associated with poor patient outcomes, whose genetic determinants remain largely unknown. As mitotic chromatin compaction defects can compromise the accuracy of chromosome segregation into daughter cells and drive CIN, characterizing the molecular mechanisms ensuring accurate chromatin compaction may identify novel CIN genes. In vitro, histone H2B monoubiquitination at lysine 120 (H2Bub1) impairs chromatin compaction, while in vivo H2Bub1 is rapidly depleted from chromatin upon entry into mitosis, suggesting that H2Bub1 removal may be a pre-requisite for mitotic fidelity. The deubiquitinating enzyme USP22 catalyzes H2Bub1 removal in interphase and may also be required for H2Bub1 removal in early mitosis to maintain chromosome stability. In this study, we demonstrate that siRNA-mediated USP22 depletion increases H2Bub1 levels in early mitosis and induces CIN phenotypes associated with mitotic chromatin compaction defects revealed by super-resolution microscopy. Moreover, USP22-knockout models exhibit continuously changing chromosome complements over time. These data identify mitotic removal of H2Bub1 as a critical determinant of chromatin compaction and faithful chromosome segregation. We further demonstrate that USP22 is a CIN gene, indicating that USP22 deletions, which are frequent in many tumor types, may drive genetic heterogeneity and contribute to cancer pathogenesis.

4.
Gynecol Oncol ; 161(3): 769-778, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33714608

RESUMEN

OBJECTIVE: High-grade serous ovarian cancer (HGSOC) is the most lethal gynaecological malignancy in women with a high level of mortality, metastatic disease, disease recurrence and multi-drug resistance. Many previous studies have focused on characterising genome instability in recurrent resistant HGSOC and while this has advanced our understanding of HGSOC, our fundamental knowledge of the mechanisms driving genome instability remains limited. Chromosome instability (CIN; an increased rate of chromosome gains and losses) is a form of genome instability that is commonly associated with recurrence and multi-drug resistance in many cancer types but has just begun to be characterised in HGSOC. METHOD: To examine the relationship between CIN and HGSOC, we employed single-cell quantitative imaging microscopy approaches capable of capturing the cell-to-cell heterogeneity associated with CIN, to assess the prevalence and dynamics of CIN within individual and patient-matched HGSOC ascites and solid tumour samples. RESULTS: CIN occurs in 90.9% of ascites samples and 100% of solid tumours, while in-depth analyses identified statistically significant temporal dynamics within the serial ascites samples. In general, aneuploidy and CIN increase with disease progression and frequently decrease following chemotherapy treatments in responsive disease. Finally, our work identified higher levels of CIN in solid tumours relative to ascites samples isolated from the same individual, which identifies a novel difference existing between solid tumours and ascites samples. CONCLUSIONS: Our findings provide novel insight into the relationship between CIN and HGSOC, and uncover a previously unknown relationship existing between CIN in solid tumours and metastatic disease (ascites).


Asunto(s)
Inestabilidad Cromosómica , Cistadenocarcinoma Seroso/genética , Recurrencia Local de Neoplasia/genética , Neoplasias Ováricas/genética , Cistadenocarcinoma Seroso/mortalidad , Cistadenocarcinoma Seroso/patología , Progresión de la Enfermedad , Femenino , Humanos , Manitoba , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología
5.
Cancer Lett ; 500: 194-207, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290867

RESUMEN

Despite high-grade serous ovarian cancer (HGSOC) being the most common and lethal gynecological cancer in women, the early etiological events driving disease development remain largely unknown. Emerging evidence now suggests that chromosome instability (CIN; ongoing changes in chromosome numbers) may play a central role in the development and progression of HGSOC. Importantly, genomic amplification of the Cyclin E1 gene (CCNE1) contributes to HGSOC pathogenesis in ~20% of patients, while Cyclin E1 overexpression induces CIN in model systems. Cyclin E1 levels are normally regulated by the SCF (SKP1-CUL1-FBOX) complex, an E3 ubiquitin ligase that includes RBX1 as a core component. Interestingly, RBX1 is heterozygously lost in ~80% of HGSOC cases and reduced expression corresponds with worse outcomes, suggesting it may be a pathogenic event. Using both short (siRNA) and long (CRISPR/Cas9) term approaches, we show that reduced RBX1 expression corresponds with significant increases in CIN phenotypes in fallopian tube secretory epithelial cells, a cellular precursor of HGSOC. Moreover, reduced RBX1 expression corresponds with increased Cyclin E1 levels and anchorage-independent growth. Collectively, these data identify RBX1 as a novel CIN gene with pathogenic implications for HGSOC.


Asunto(s)
Proteínas Portadoras/genética , Inestabilidad Cromosómica/genética , Ciclina E/genética , Cistadenocarcinoma Seroso/genética , Proteínas Oncogénicas/genética , Neoplasias Ováricas/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Cistadenocarcinoma Seroso/patología , Femenino , Amplificación de Genes/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Clasificación del Tumor , Neoplasias Ováricas/patología , Proteínas Ligasas SKP Cullina F-box/genética
6.
Cancers (Basel) ; 12(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106628

RESUMEN

Chromosome instability (CIN), or progressive changes in chromosome numbers, is an enabling feature of many cancers; however, the mechanisms giving rise to CIN remain poorly understood. To expand our mechanistic understanding of the molecular determinants of CIN in humans, we employed a cross-species approach to identify 164 human candidates to screen. Using quantitative imaging microscopy (QuantIM), we show that silencing 148 genes resulted in significant changes in CIN-associated phenotypes in two distinct cellular contexts. Ten genes were prioritized for validation based on cancer patient datasets revealing frequent gene copy number losses and associations with worse patient outcomes. QuantIM determined silencing of each gene-induced CIN, identifying novel roles for each as chromosome stability genes. SKP1 was selected for in-depth analyses as it forms part of SCF (SKP1, CUL1, FBox) complex, an E3 ubiquitin ligase that targets proteins for proteolytic degradation. Remarkably, SKP1 silencing induced increases in replication stress, DNA double strand breaks and chromothriptic events that were ascribed to aberrant increases in Cyclin E1 levels arising from reduced SKP1 expression. Collectively, these data reveal a high degree of evolutionary conservation between human and budding yeast CIN genes and further identify aberrant mechanisms associated with increases in chromothriptic events.

7.
Cells ; 9(2)2020 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32024251

RESUMEN

Micronuclei are small, extranuclear bodies that are distinct from the primary cell nucleus. Micronucleus formation is an aberrant event that suggests a history of genotoxic stress or chromosome mis-segregation events. Accordingly, assays evaluating micronucleus formation serve as useful tools within the fields of toxicology and oncology. Here, we describe a novel micronucleus formation assay that utilizes a high-throughput imaging platform and automated image analysis software for accurate detection and rapid quantification of micronuclei at the single cell level. We show that our image analysis parameters are capable of identifying dose-dependent increases in micronucleus formation within three distinct cell lines following treatment with two established genotoxic agents, etoposide or bleomycin. We further show that this assay detects micronuclei induced through silencing of the established chromosome instability gene, SMC1A. Thus, the micronucleus formation assay described here is a versatile and efficient alternative to more laborious cytological approaches, and greatly increases throughput, which will be particularly beneficial for large-scale chemical or genetic screens.


Asunto(s)
Inestabilidad Cromosómica/genética , Daño del ADN/genética , Imagenología Tridimensional , Pruebas de Micronúcleos , Microscopía , Análisis de la Célula Individual , Automatización , Bleomicina/farmacología , Etopósido/farmacología , Silenciador del Gen/efectos de los fármacos , Células HCT116 , Humanos
8.
Cancers (Basel) ; 11(8)2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31357676

RESUMEN

Chromosome instability (CIN), or constantly evolving chromosome complements, is a form of genome instability implicated in the development and progression of many cancer types, however, the molecular determinants of CIN remain poorly understood. Condensin is a protein complex involved in chromosome compaction, and recent studies in model organisms show that aberrant compaction adversely impacts mitotic fidelity. To systematically assess the clinical and fundamental impacts that reduced condensin gene expression have in cancer, we first assessed gene copy number alterations of all eight condensin genes. Using patient derived datasets, we show that shallow/deep deletions occur frequently in 12 common cancer types. Furthermore, we show that reduced expression of each gene is associated with worse overall survival in colorectal cancer patients. To determine the overall impact that reduced condensin gene expression has on CIN, a comprehensive siRNA-based screen was performed in two karyotypically stable cell lines. Following gene silencing, quantitative imaging microscopy identified increases in CIN-associated phenotypes, including changes in nuclear areas, micronucleus formation, and chromosome numbers. Although silencing corresponded with increases in CIN phenotypes, the most pronounced phenotypes were observed following SMC2 and SMC4 silencing. Collectively, our clinical and fundamental findings suggest reduced condensin expression and function may be a significant, yet, underappreciated driver of colorectal cancer.

9.
Cancers (Basel) ; 11(2)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30781398

RESUMEN

Chromosome instability (CIN) is defined as an increased rate of chromosome gains and losses that manifests as cell-to-cell karyotypic heterogeneity and drives cancer initiation and evolution. Current research efforts are aimed at identifying the etiological origins of CIN, establishing its roles in cancer pathogenesis, understanding its implications for patient prognosis, and developing novel therapeutics that are capable of exploiting CIN. Thus, the ability to accurately identify and evaluate CIN is critical within both research and clinical settings. Here, we provide an overview of quantitative single cell approaches that evaluate and resolve cell-to-cell heterogeneity and CIN, and discuss considerations when selecting the most appropriate approach to suit both research and clinical contexts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA