Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
J Fluoresc ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235654

RESUMEN

We aim to develop an amplified luminescence proximity homogeneous assay (AlphaLISA) for quantification of trypsinogen-2 levels in human serum for the diagnosis of acute pancreatitis. Based on new amplified luminescence proximity homogeneity assay (AlphaLISA) method, carboxyl-modified donor and acceptor beads were coupled to capture and detection antibodies. A double antibody sandwich immunoassay was used to detect the concentration of trypsinogen-2 in serum. The method had good linearity (> 0.998). The intra - analysis precision was between 1.54% and 2.20% (< 10%), the inter-analysis precision was between 3.17% and 6.94% (< 15%), and the recovery was between 96.23% and 103.45%. The cross-reactivity of carbohydrate antigen 242 (CA242) and T-cell immunoglobulin mucin-3 (Tim-3) were 0.09% and 0.93%, respectively. The detection time only needed 15 min. The results of trypsinogen-2-AlphaLISA and time-resolved fluorescence immunoassay were consistent (ρ = 0.9019). In addition, serum trypsinogen-2 concentration in patients with acute pancreatitis [239.23 (17.83-807.58) ng/mL] was significantly higher than that in healthy controls [20.54 (12.10-39.73) ng/mL]. When the cut-off value was 35.38ng/mL, the sensitivity and specificity were 91.8% and 96.67%, and the positive detection rate was 91.80%. We have successfully established a trypsinogen-2-AlphaLISA method, which can promote the timely diagnosis of acute pancreatitis.

2.
Anal Chim Acta ; 1316: 342826, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969424

RESUMEN

BACKGROUND: In the fields of environmental monitoring and nuclear emergency, in order to obtain the relevant information of uranyl-induced environmental pollution and nuclear accident, it is necessary to establish a rapid quantitative analytical technique for uranyl ions. As a new promising technique, surface-enhanced Raman scattering (SERS) is hopeful to achieve this goal. However, uranyl ions are easily desorbed from SERS substrates under acidic conditions, and the structures of SERS substrates will be destroyed in the strong acidic aqueous solutions. Besides, the quantitative detection ability of SERS for uranyl ions needs to be promoted. Hence, it is necessary to develop new SERS substrates for accurate quantitative detection of trace uranyl in environmental water samples, especially in acidic solutions. RESULTS: In this work, we prepared silver ions/sodium alginate supramolecular hydrogel membrane (Ag+/SA SMH membrane), and the Ag+ ions from the membrane were transformed into Ag/Ag2O complex nanoparticles under laser irradiation. The Raman signal of uranyl was strongly enhanced under the synergistic interaction of electromagnetic enhancement derived from the Ag nanoparticles and charge transfer enhancement between uranyl and Ag2O. Utilizing the peak of SA (550 cm-1) as an internal standard, a quantitative detection with a LOD of 6.7 × 10-9 mol L-1 was achieved due to a good linear relation of uranyl concentrations from 1.0 × 10-8 mol L-1 to 2 × 10-6 mol L-1. Furthermore, foreign metal ions hardly affected the SERS detection of uranyl, and the substrate could determine trace uranyl in natural water samples. Particularly, the acidity had no obvious effect on SERS signals of uranyl ions. Therefore, in addition to the detection of uranyl ions in natural water samples, the proposed strategy could also detect uranyl ions in strong acidic solutions. SIGNIFICANCE AND NOVELTY: A simple one-step method was used to prepare an Ag+/SA SMH membrane for rapid quantitative detection of uranyl ions for the first time. The proposed substrate successfully detected uranyl ions under acidic conditions by immobilizing uranyl ion in hydrogel structure. In comparison with the previous studies, a more accurate quantitative analysis for uranyl ions was achieved by using an internal standard, and the proposed strategy could determine trace uranyl in either natural water samples or strong acidic solutions.

3.
Food Sci Nutr ; 12(7): 5036-5051, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39055192

RESUMEN

Xinhui Chenpi (XHCP) is a well-known type of Chenpi (CP) widely used as both a Chinese herb and a food ingredient. While previous studies have explored how the quality of CP changes over time, there has been limited research specifically on XHCP. This study aims to assess the chemical components and quality of XHCP based on total flavonoid content (TF), antioxidant activity (AA), and color value (CV) at two stages: freshly harvested (XHCP-0Y) and after 3 years of storage (XHCP-3Y). Thirty-eight common volatile compounds were identified, and the content of 17 compounds among them, nine nonvolatile compounds, which included one alkaloid (synephrine), three phenolic acids (PA, protocatechuic acid, vanillic acid, and ferulic acid), and five flavonoids (narirutin, hesperidin, sinensetin, nobiletin, and tangeretin), were firstly detected by the newly developed gas chromatograph-mass spectrometer (GC-MS) and ultra-performance liquid chromatography (UPLC) methods. Compared to XHCP-0Y, the content of 17 volatile compounds and synephrine decreased in XHCP-3Y to varying degrees, while the content of PA, five flavonoids, TF, AA, and CV increased. The reduction of dryness caused by volatile compounds and the enhancement of efficacy related to PA, flavonoids, and AA suggested improved quality of XHCP after 3 years of storage. The methods developed in this study show promise for evaluating the quality of XHCP during the aging process.

4.
Food Chem ; 459: 140455, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029422

RESUMEN

The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.


Asunto(s)
Aromatizantes , Colorantes Fluorescentes , Análisis de los Alimentos , Colorantes Fluorescentes/química , Aromatizantes/química , Aromatizantes/análisis , Gusto , Humanos
5.
Eur J Clin Microbiol Infect Dis ; 43(9): 1815-1823, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39012550

RESUMEN

PURPOSE: This study aimed to develop a double antigen sandwich ELISA (DAgS-ELISA) method for more efficient, accurate, and quantitative detection of total antibodies against Candida albicans enolase1 (CaEno1) for diagnosing invasive candidiasis (IC). METHODS: DAgS-ELISA was developed using recombinant CaEno1 and a monoclonal antibody as the standard. Performance evaluation included limit of detection, accuracy, and repeatability. Dynamic changes in antibody levels against CaEno1 in serum from systemic candidiasis mice were analyzed using DAgS-ELISA. Patient serum samples from IC, Candida colonization, bacterial infections, and healthy controls were analyzed with DAgS-ELISA and indirect ELISA. RESULTS: DAgS-ELISA outperformed indirect ELISA in terms of linear range and test background. In systemic candidiasis mice, a distinctive 'double-peak' pattern in dynamic antibody levels was observed. Additionally, there was a high level of consistency in the positive rates of CaEno1 antibodies detected by both DAgS-ELISA and indirect ELISA. While the positivity rates differed among patient groups, no significant variations in antibody levels were detected among the various positive patient groups. CONCLUSIONS: DAgS-ELISA offers a reliable novel approach for IC diagnosis, enabling rapid, accurate, and quantitative detection of CaEno1 antibodies. Further validation and optimization are needed for its clinical application and effectiveness.


Asunto(s)
Anticuerpos Antifúngicos , Candida albicans , Ensayo de Inmunoadsorción Enzimática , Fosfopiruvato Hidratasa , Ensayo de Inmunoadsorción Enzimática/métodos , Animales , Fosfopiruvato Hidratasa/inmunología , Fosfopiruvato Hidratasa/sangre , Candida albicans/inmunología , Anticuerpos Antifúngicos/sangre , Ratones , Humanos , Candidiasis Invasiva/diagnóstico , Candidiasis Invasiva/inmunología , Candidiasis Invasiva/sangre , Femenino , Candidiasis/diagnóstico , Candidiasis/sangre , Candidiasis/inmunología , Antígenos Fúngicos/inmunología , Antígenos Fúngicos/sangre , Sensibilidad y Especificidad , Proteínas Fúngicas/inmunología , Anticuerpos Monoclonales/inmunología , Ratones Endogámicos BALB C
6.
J Fluoresc ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865061

RESUMEN

In order to design organic small molecule fluorescent materials with multiple sensing, a bibranched -NH2 modified cyanostilbene derivative (AM) was synthesized. It exhibits solvent and aggregation-induced emission effects, with a solid-state quantum yield of 28%, which is seven times higher than that in THF. The synthesized sample AM demonstrated high sensitivity to trace water via a fluorescence "turn-off" response, achieving a low detection limit of 0.41 µM in THF and 0.80 µM in EtOH. AM also exhibits a "turn-off" response to picric acid, attributed to the photo-induced electron transfer effect it induces. The recognition of picric acid by AM demonstrates specificity and resistance to interference from nitro explosives, with a detection limit of 300 ppb and a linear relationship (R2 = 0.9981) at the range of 0-4 equivalents AM. Such acid recognition can facilitate the design of qualitative test papers and safety inks. Additionally, AM can function as a temperature sensor with a linear relationship (R2 = 0.9976) within the temperature range of 25-110 °C. Leveraging these unique characteristics, a series of methods were proposed for the direct quantitative determination of trace water in nonaqueous solvents, picric acid, and temperature.

7.
Talanta ; 277: 126407, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878512

RESUMEN

Uranium is an essential nuclear material in civilian and military areas; however, its extensive application raises concerns about the potential safety issues in the fields of environmental protection and nuclear industry. In this study, we developed an Ag/Ag2O-COF (covalent-organic framework) composite SERS substrate to detect uranyl ions (UO22+) in environmental aqueous solutions. Herein, the strong SERS effect of uranyl adsorbed in Ag/Ag2O composite and the high adsorption efficiency of COF TpPa-1 were combined to realize the trace detection of uranyl ions. This method displayed a linear range of 10-8 mol L-1 to 10-6 mol L-1 with the detection limit of 8.9 × 10-10 mol L-1 for uranyl ions. Furthermore, common metal cations and oxo-ions hardly affected the SERS detection of uranyl, which is helpful for the trace analysis of uranyl in natural water samples. Although the proposed strategy is deployed for uranyl detection, the reusable and high-efficiency system may be expanded to trace detection of other substance with Raman activity.

8.
Pathogens ; 13(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921802

RESUMEN

Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is caused by Botrytis cinerea; the disease spreads in greenhouses by spores in the air and the spore attaches to the leaf and infects plant through the orifice. In this study, 120 µmol/L propidium monoazide (PMA) were suitable for treatment and quantitation viable spore by quantitative real-time PCR, with a limit detection of 8 spores/mL in spore suspension. In total, 93 strains of B. cinerea with high pathogenicity were isolated and identified from the air samples of grapevines greenhouses by a portable sampler. The particle size of B. cinerea aerosol ranged predominately from 0.65-3.3 µm, accounting for 71.77% of the total amount. The B. cinerea spore aerosols were infective to healthy grape plants, with the lowest concentration that could cause disease being 42 spores/m3. Botrytis cinerea spores collected form six greenhouse in Shandong Province were quantified by PMA-qPCR, with a higher concentration (1182.89 spores/m3) in May and June and a lower concentration in July and August (6.30 spores/m3). This study suggested that spore dispersal in aerosol is an important route for the epidemiology of plant fungal disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant diseases.

9.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931008

RESUMEN

Flexible and transparent surface-enhanced Raman scattering (SERS) substrates have attracted considerable attention for their ability to enable the direct in situ detection of analytes on curved surfaces. However, the curvature of an object can impact the signal enhancement of SERS during the measurement process. Herein, we propose a simple approach for fabricating a curvature-insensitive transparent SERS substrate by depositing silver nanoparticles (Ag NPs) onto a large-area wrinkled polystyrene/polydimethylsiloxane (Ag NP@W-PS/PDMS) bilayer film. Using rhodamine 6G (R6G) as a probe molecule, the optimized Ag NP@W-PS/PDMS film demonstrates a high analytical enhancement factor (AEF) of 4.83 × 105, excellent uniformity (RSD = 7.85%) and reproducibility (RSD = 3.09%), as well as superior mechanical flexibility. Additionally, in situ measurements of malachite green (MG) on objects with diverse curvatures, including fish, apple, and blueberry, are conducted using a portable Raman system, revealing a consistent SERS enhancement. Furthermore, a robust linear relationship (R2 ≥ 0.990) between Raman intensity and the logarithmic concentration of MG detected from these objects is achieved. These results demonstrate the tremendous potential of the developed curvature-insensitive SERS substrate as a point-of-care testing (POCT) platform for identifying analytes on irregular objects.

10.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931587

RESUMEN

Track irregularities directly affect the quality and safety of railway vehicle operations. Quantitative detection and real-time monitoring of track irregularities are of great importance. However, due to the frequent variable vehicle speed, vehicle operation is a typical non-stationary process. The traditional signal analysis methods are unsuitable for non-stationary processes, making the quantitative detection of the wavelength and amplitude of track irregularities difficult. To solve the above problems, this paper proposes a quantitative detection method of track irregularities under non-stationary conditions with variable vehicle speed by order tracking analysis for the first time. Firstly, a simplified wheel-rail dynamic model is established to derive the quantitative relationship between the axle-box vertical vibration and the track vertical irregularities. Secondly, the Simpson double integration method is proposed to calculate the axle-box vertical displacement based on the axle-box vertical acceleration, and the process error is optimized. Thirdly, based on the order tracking analysis theory, the angular domain resampling is performed on the axle-box vertical displacement time-domain signal in combination with the wheel rotation speed signals, and the quantitative detection of the track irregularities is achieved. Finally, the proposed method is validated based on simulation and field test analysis cases. We provide theoretical support and method reference for the quantitative detection method of track irregularities.

11.
Biosens Bioelectron ; 261: 116488, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905860

RESUMEN

Long-stranded non-coding RNAs (lncRNA) have important roles in disease as transcriptional regulators, mRNA processing regulators and protein synthesis factors. However, traditional methods for detecting lncRNA are time-consuming and labor-intensive, and the functions of lncRNA are still being explored. Here, we present a surface enhanced Raman spectroscopy (SERS) based biosensor for the detection of lncRNA associated with liver cancer (LC) as well as in situ cellular imaging. Using the dual SERS probes, quantitative detection of lncRNA (DAPK1-215) can be achieved with an ultra-low detection limit of 952 aM by the target-triggered assembly of core-satellite nanostructures. And the reliability of this assay can be further improved with the R2 value of 0.9923 by an internal standard probe that enables the signal dynamic calibration. Meanwhile, the high expression of DAPK1-215 mainly distributed in the cytoplasm was observed in LC cells compared with the normal ones using the SERS imaging method. Moreover, results of cellular function assays showed that DAPK1-215 promoted the migration and invasion of LC by significantly reducing the expression of the structural domain of death associated protein kinase. The development of this biosensor based on SERS can provide a sensitive and specific method for exploring the expression of lncRNA that would be a potential biomarker for the screening of LC.


Asunto(s)
Neoplasias Hepáticas , Nanoestructuras , ARN Largo no Codificante , Espectrometría Raman , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/química , Espectrometría Raman/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Nanoestructuras/química , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Línea Celular Tumoral , Límite de Detección , Oro/química
12.
Biosens Bioelectron ; 258: 116357, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729049

RESUMEN

The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.


Asunto(s)
Técnicas Biosensibles , Grano Comestible , Contaminación de Alimentos , Límite de Detección , Microesferas , Micotoxinas , Zearalenona , Micotoxinas/análisis , Grano Comestible/química , Grano Comestible/microbiología , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Zearalenona/análisis , Cromatografía de Afinidad/métodos , Cromatografía de Afinidad/instrumentación , Aflatoxina B1/análisis , Aflatoxina B1/aislamiento & purificación , Tricotecenos/análisis , Tiras Reactivas/análisis , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Colorantes Fluorescentes/química
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124536, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815312

RESUMEN

Antibiotic mycelia residues (AMRs) contain antibiotic residues. If AMRs are ingested in excess by livestock, it may cause health problems. To address the current problem of unknown pixel-scale adulteration concentration in NIR-HSI, this paper innovatively proposes a new spectral simulation method for the evaluation of AMRs in protein feeds. Four common protein feeds (soybean meal (SM), distillers dried grains with solubles (DDGS), cottonseed meal (CM), and nucleotide residue (NR)) and oxytetracycline residue (OR) were selected as study materials. The first step of the method is to simulate the spectra of pixels with different adulteration concentrations using a linear mixing model (LMM). Then, a pixel-scale OR quantitative model was developed based on the simulated pixel spectra combined with local PLS based on global PLS scores (LPLS-S) (which solves the problem of nonlinear distribution of the prediction results due to the 0%-100% content of the correction set). Finally, the model was used to quantitatively predict the OR content of each pixel in hyperspectral image. The average value of each pixel was calculated as the OR content of that sample. The implementation of this method can effectively overcome the inability of PLS-DA to achieve qualitative identification of OR in 2%-20% adulterated samples. In compared to the PLS model built by averaging the spectra over the region of interest, this method utilizes the precise information of each pixel, thereby enhancing the accuracy of the detection of adulterated samples. The results demonstrate that the combination of the method of simulated spectroscopy and LPLS-S provides a novel method for the detection and analysis of illegal feed additives by NIR-HSI.


Asunto(s)
Alimentación Animal , Antibacterianos , Micelio , Espectroscopía Infrarroja Corta , Antibacterianos/análisis , Alimentación Animal/análisis , Espectroscopía Infrarroja Corta/métodos , Micelio/química , Imágenes Hiperespectrales/métodos , Residuos de Medicamentos/análisis , Análisis de los Mínimos Cuadrados
14.
J Hazard Mater ; 470: 134186, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574664

RESUMEN

The pervasive presence of nanoplastics (NPs) in environmental media has raised significant concerns regarding their implications for environmental safety and human health. However, owing to their tiny size and low level in the environment, there is still a lack of effective methods for measuring the amount of NPs. Leveraging the principles of Mie scattering, a novel approach for rapid in situ quantitative detection of small NPs in low concentrations in water has been developed. A limit of detection of 4.2 µg/L for in situ quantitative detection of polystyrene microspheres as small as 25 nm was achieved, and satisfactory recoveries and relative standard deviations were obtained. The results of three self-ground NPs showed that the method can quantitatively detect the concentration of NPs in a mixture of different particle sizes. The satisfactory recoveries (82.4% to 110.3%) of the self-ground NPs verified the good anti-interference ability of the method. The total concentrations of the NPs in the five brands of commercial bottled water were 0.07 to 0.39 µg/L, which were directly detected by the method. The proposed method presents a potential approach for conducting in situ and real-time environmental risk assessments of NPs on human and ecosystem health in actual water environments.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Poliestirenos/química , Microplásticos/análisis , Nanopartículas/química , Agua Potable/análisis , Agua Potable/química , Microesferas , Tamaño de la Partícula , Límite de Detección , Dispersión de Radiación
15.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460951

RESUMEN

Snakehead vesiculovirus (SHVV) is one of the primary pathogens responsible for viral diseases in the snakehead fish. A TaqMan-based real-time PCR assay was established for the rapid detection and quantification of SHVV in this study. Specific primers and fluorescent probes were designed for phosphoprotein (P) gene, and after optimizing the reaction conditions, the results indicated that the detection limit of this method could reach 37.1 copies, representing a 100-fold increase in detection sensitivity compared to RT-PCR. The specificity testing results revealed that this method exhibited no cross-reactivity with ISKNV, LMBV, RSIV, RGNNV, GCRV, and CyHV-2. Repetition experiments demonstrated that both intra-batch and inter-batch coefficients of variation were not higher than 1.66%. Through in vitro infection experiments monitoring the quantitative changes of SHVV in different tissues, the results indicated that the liver and spleen exhibited the highest viral load at 3 poi. The TaqMan-based real-time PCR method established in this study exhibits high sensitivity, excellent specificity, and strong reproducibility. It can be employed for rapid detection and viral load monitoring of SHVV, thus providing a robust tool for the clinical diagnosis and pathogen research of SHVV.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Perciformes , Infecciones por Rhabdoviridae , Animales , Perciformes/genética , Vesiculovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Enfermedades de los Peces/diagnóstico , Reproducibilidad de los Resultados , Iridoviridae/genética , Sensibilidad y Especificidad
16.
Food Chem ; 445: 138724, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350202

RESUMEN

Given the serious harm caused by dietary intake of diethylstilbestrol (DES), it is urgent to explore rapid and sensitive DES sensing methods. In this work, a photothermal DES immunochromatography sensor based on covalent organic framework (COF) was constructed. The performance of COF in the field of photothermal sensing was systematically investigated for the first time. A donor-acceptor type of COF with a photothermal conversion rate of 51.17 % was synthesized. The logarithm of the DES concentrations-temperature change value standard curve was plotted. The intensity of the photothermal sensing signal was inversely proportional to the sample concentration. The detection limit of the proposed photothermal method (0.24 µg·L-1) was 10 times higher than that of visual detection (3 µg·L-1). This work not only constructed a novel detection method for DES sensing, but also provided a feasible demonstration for the application of COF in photothermal sensing and expanded the application of their photothermal properties.


Asunto(s)
Estructuras Metalorgánicas , Cromatografía de Afinidad
17.
Food Chem ; 445: 138711, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354645

RESUMEN

Although furazolidone (FZD) was completely banned from livestock production in many countries many years ago due to its mutagenicity and carcinogenicity, the abuse of FZD is still common today. Accurate and rapid detection of FZD residues in animal-derived food products is highly important for human health. Here, a time-resolved fluorescence immunochromatography (TRFI) test strip for rapid and quantitative detection of 3-amino-2-oxazolidinone (AOZ) residues in animal foods was developed and validated. Its limit of detection and limit of quantification were 0.05 and 0.14 µg/kg, respectively. The typical recovery rates were 95-105 % in chicken breast samples spiked with the AOZ standard substance at concentrations of 0.05-2 µg/kg, with a coefficient of variation value ≤8.5 %. The cross-reaction rates of the TRFI-AOZ test strips with 3-amino-5-morpholinomethyl-2-oxazolidone, semicarbazide, and 1-amino-imidazolidin-2,4-dione were less than 1 %. The newly developed TRFI test strip has high sensitivity, high specificity, cost effectiveness and user-friendly control, and is suitable for the rapid and large-scale screening of AOZ residues in animal foods.


Asunto(s)
Furazolidona , Mutágenos , Animales , Humanos , Furazolidona/análisis , Cromatografía de Afinidad/métodos , Sensibilidad y Especificidad , Mutágenos/análisis
18.
J Hazard Mater ; 467: 133763, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38359757

RESUMEN

Practical gas sensing application requires sensors to quantify target analytes with high sensitivity and reproducibility. However, conventional surface enhanced Raman scattering (SERS) sensor lacks reproducibility and quantification arising from variations of "hot spot" distribution and measurement conditions. Here, a ratio-dependent SERS sensor was developed for quantitative label-free gas sensing. Au@Ag-Au nanoparticles (NPs) were filtered onto anodic aluminum oxide (AAO) forming Au@Ag-Au@AAO SERS substrate. 4-MBA was encapsulated in the gap of Au@Ag-Au and served as the internal standard (IS) to calibrate SERS signal fluctuation for improved quantification ability. Combined with headspace sampling method, SO2 residue in traditional Chinese medicine (TCM) can be extracted and captured on the immediate vicinity of Au@Ag-Au surface. The intensity ratio I613 cm-1/I1078 cm-1 showed excellent linearity within the range of 0.5 mg/kg-500 mg/kg, demonstrating superior quantification performance for SO2 detection. Signals for concentration as low as 0.05 mg/kg of SO2 could be effectively collected, much lower than the strictest limit 10 mg/kg in Chinese Pharmacopoeia. Combined with a handheld Raman spectrometer, handy and quantitative TCM quality evaluation in aspect of SO2 residue was realized. This ratiometric SERS sensor functioned well in rapid on-site SO2 quantification, exhibiting excellent sensitivity and simple operability.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Reproducibilidad de los Resultados , Plata/química , Medicina Tradicional China
19.
Environ Res ; 249: 118466, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354882

RESUMEN

Global outbreaks and the spread of viral diseases in the recent years have led to a rapid increase in the usage of antiviral drugs (ATVs), the residues and metabolites of which are discharged into the natural environment, posing a serious threat to human health. There is an urgent need to develop sensitive and rapid detection tools for multiple ATVs. In this study, we developed a highly sensitive electrochemical sensor comprising a glassy carbon electrode (GCE) modified with graphitized hydroxylated multi-walled carbon nanotubes (G-MWCNT-OH) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, IL) for the detection of six ATVs including famciclovir (FCV), remdesivir (REM), favipiravir (FAV), hydroxychloroquine sulfate (HCQ), cepharanthine (CEP) and molnupiravir (MOL). The morphology and structure of the G-MWCNT-OH/IL nanocomposites were characterized comprehensively, and the electroactive surface area and electron conductivity of G-MWCNT-OH/IL/GCE were determined using cyclic voltammetry and electrochemical impedance spectroscopy. The thermodynamic stability and non-covalent interactions between the G-MWCNT-OH and IL were evaluated through quantum chemical simulation calculations, and the mechanism of ATV detection using the G-MWCNT-OH/IL/GCE was thoroughly examined. The detection conditions were optimized to improve the sensitivity and stability of electrochemical sensors. Under the optimal experimental conditions, the G-MWCNT-OH/IL/GCE exhibited excellent electrocatalytic performance and detected the ATVs over a wide concentration range (0.01-120 µM). The limit of detections (LODs) were 42.3 nM, 55.4 nM, 21.9 nM, 15.6 nM, 10.6 nM, and 3.2 nM for FCV, REM, FAV, HCQ, CEP, and MOL, respectively. G-MWCNT-OH/IL/GCE was also highly stable and selective to the ATVs in the presence of multiple interfering analytes. This sensor exhibited great potential for enabling the quantitative detection of multiple ATVs in actual water environment.


Asunto(s)
Antivirales , Técnicas Electroquímicas , Líquidos Iónicos , Nanotubos de Carbono , Antivirales/análisis , Antivirales/química , Nanotubos de Carbono/química , Líquidos Iónicos/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Límite de Detección , Electrodos , Grafito/química
20.
Biosens Bioelectron ; 252: 116140, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394702

RESUMEN

With the globalization and complexity of the food supply chain, the market is becoming increasingly competitive and food fraudulent activities are intensifying. The current state of food detection faced two primary challenges. Firstly, existing testing methods were predominantly laboratory-based, requiring complex procedures and precision instruments. Secondly, there was a lack of accurate and efficient quantitative detection methods. Taking cow's milk as an example, this study introduced a novel method for nucleic acid quantification in dairy products, based on lateral flow strips (LFS). The core idea of this method is to design single-stranded DNA (ssDNA) probes to hybridize with mitochondrial genes, which are abundant, stable, and species-specific in dairy products, as detection targets. Drawing inspiration from the principles of nucleic acid amplification, this research innovatively established a new DNA hybridization method, named LAMP-Like Hybridization (HybLAMP-Like). Leveraging the denaturation and DNA polymerization functions of the bst enzyme, efficient binding of the probe and template strand was achieved. This method eliminated the need for nucleic acid amplification, simplifying the procedure and mitigating aerosol contamination, thereby ensuring the accuracy of the detection results. The method exhibited exceptional sensitivity, capable of detecting extremely low to 12.5 ng in visual inspection and 3.125 ng when using a reader. In terms of practicality, it could achieve visual detection of cow's milk content as low as 1% in adulterated dairy products. When combined with a portable LFS reader, it also enabled precise quantitative analysis of milk adulteration.


Asunto(s)
Técnicas Biosensibles , Leche , Animales , Técnicas Biosensibles/métodos , ADN/genética , ADN/química , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN de Cadena Simple , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA