Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Anal Bioanal Chem ; 415(24): 6009-6025, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37550544

RESUMEN

A multi-residue trace analytical method is presented to accurately quantify 146 currently used pesticides in (agricultural) soils with varying soil properties. Pesticides were extracted using an optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach and chemical analysis was carried out by liquid chromatography coupled to tandem mass spectrometry (triple quadrupole). Quantification was based on matrix-matched internal standards calibration, using 95 isotopically labeled analyte analogues. In contrast to the common approach of method validation using soils freshly spiked with analytes shortly before the extraction, our method is additionally validated via an in-house prepared partly aged soil, which contains all target pesticides and via agricultural field soils with native pesticide residues. The developed method is highly sensitive (median method limit of quantification: 0.2 ng/g), precise (e.g., median intra-day and inter-day method precision both ~ 4% based on field soils), and true ((i) quantified pesticide concentrations of the partly aged soil remained stable during 6 months, were close to the initially spiked nominal concentration of 10 ng/g, and thus can be used to review trueness in the future; (ii) median freshly spiked relative recovery: 103%; and (iii) participation in a ring trial: median z-scores close to one (good to satisfactory result)). Its application to selected Swiss (agricultural) soils revealed the presence of in total 77 different pesticides with sum concentrations up to 500 ng/g. The method is now in use for routine soil monitoring as part of the Swiss Action Plan for Risk Reduction and Sustainable Use of Plant Protection Products.

3.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 401-428, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37068748

RESUMEN

This article critically reviews analytical method validation and quality control applied to the environmental chemistry field. The review focuses on the determination of organic micropollutants (OMPs), specifically emerging contaminants and pesticides, in the aquatic environment. The analytical technique considered is (gas and liquid) chromatography coupled to mass spectrometry (MS), including high-resolution MS for wide-scope screening purposes. An analysis of current research practices outlined in the literature has been performed, and key issues and analytical challenges are identified and critically discussed. It is worth emphasizing the lack of specific guidelines applied to environmental analytical chemistry and the minimal regulation of OMPs in waters, which greatly affect method development and performance, requirements for method validation, and the subsequent application to samples. Finally, a proposal is made for method validation and data reporting, which can be understood as starting points for further discussion with specialists in environmental analytical chemistry.

4.
Methods Mol Biol ; 2571: 189-206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152163

RESUMEN

Metabolites represent the most downstream level of the cellular organization. Hence, an in vitro untargeted metabolomics approach is extremely valuable to deepen the understanding of how endogenous metabolites in cells are altered under a given biological condition. This chapter describes a robust liquid chromatography-high-resolution mass spectrometry-based metabolomics and lipidomics platform applied to cell culture extracts. The analytical workflow includes an optimized sample preparation procedure to cover a wide range of metabolites using liquid-liquid extraction and validated instrumental operation procedures with the implementation of comprehensive quality assurance and quality control measures to ensure high reproducibility. The lipidomics platform is based on reversed-phase liquid chromatography for the separation of slightly polar to apolar metabolites and covers a broad range of lipid classes, while the metabolomics platform makes use of two hydrophilic interaction liquid chromatography methods for the separation of polar metabolites, such as organic acids, amino acids, and sugars. The chapter focuses on the analysis of cultured HepaRG cells that are derived from a human hepatocellular carcinoma; however, the sample preparation and analytical platforms can easily be adapted for other types of cells.


Asunto(s)
Lipidómica , Metabolómica , Aminoácidos , Técnicas de Cultivo de Célula , Extractos Celulares , Humanos , Lípidos , Espectrometría de Masas/métodos , Metabolómica/métodos , Reproducibilidad de los Resultados , Azúcares
5.
J Environ Radioact ; 255: 107031, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36191508

RESUMEN

The Korea Research Institute of Standards and Science has developed a new concrete reference material (RM) for measuring gamma-emitting radionuclides, such as 134Cs, 137Cs, 65Zn, 241Am, and 60Co, to improve and maintain the quality assurance and quality control of the radioactivity measurement in radioactive waste generated during the decommissioning of nuclear power plants. In this study, cement, SiO2, and bentonite, which are the main components of concrete, were mixed in an appropriate ratio with radionuclides. For certification and homogeneity assessment, 10 bottles were randomly selected, two sub-samples were collected from each bottle, and radionuclides were measured via HPGe gamma spectrometry. The results of the homogeneity tests using a one-way analysis of variance on 241Am, 134Cs, 137Cs, 65Zn, and 60Co in the concrete RM fulfilled the requirements of ISO Guide 35. Coincidence summing and self-absorption correction were performed on measurement results by introducing the Monte Carlo efficiency transfer code and Monte Carlo N-Particle transport code. The reference values for five radionuclides (60Co, 65Zn, 241Am, 134Cs, and 137Cs) in the RM were in the range of 15-40 Bq/kg, and the expanded uncertainty was within 10% (k = 2). To the best of our knowledge, this was the first study to develop concrete RM for measuring gamma-emitting radionuclides.


Asunto(s)
Monitoreo de Radiación , Residuos Radiactivos , Radiactividad , Plantas de Energía Nuclear , Dióxido de Silicio , Monitoreo de Radiación/métodos , Radioisótopos de Cesio , Control de Calidad
6.
Metabolomics ; 18(4): 24, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397018

RESUMEN

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) is enabling the identification, development, prioritization, and promotion of suitable reference materials (RMs) to be used in quality assurance (QA) and quality control (QC) for untargeted metabolomics research. OBJECTIVES: This review aims to highlight current RMs, and methodologies used within untargeted metabolomics and lipidomics communities to ensure standardization of results obtained from data analysis, interpretation and cross-study, and cross-laboratory comparisons. The essence of the aims is also applicable to other 'omics areas that generate high dimensional data. RESULTS: The potential for game-changing biochemical discoveries through mass spectrometry-based (MS) untargeted metabolomics and lipidomics are predicated on the evolution of more confident qualitative (and eventually quantitative) results from research laboratories. RMs are thus critical QC tools to be able to assure standardization, comparability, repeatability and reproducibility for untargeted data analysis, interpretation, to compare data within and across studies and across multiple laboratories. Standard operating procedures (SOPs) that promote, describe and exemplify the use of RMs will also improve QC for the metabolomics and lipidomics communities. CONCLUSIONS: The application of RMs described in this review may significantly improve data quality to support metabolomics and lipidomics research. The continued development and deployment of new RMs, together with interlaboratory studies and educational outreach and training, will further promote sound QA practices in the community.


Asunto(s)
Lipidómica , Metabolómica , Espectrometría de Masas/métodos , Metabolómica/métodos , Control de Calidad , Reproducibilidad de los Resultados
7.
Metabolites ; 11(9)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34564451

RESUMEN

Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.

8.
Ecotoxicol Environ Saf ; 217: 112223, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848750

RESUMEN

Lee et al. (2019) recently proposed that volatile methylsiloxanes (VMS) be considered as emerging contaminants in the Arctic environment based on the results of suspect and non-target screening of environmental samples collected from Ny-Ålesund, Svalbard. In any analytical program, it is of critical importance to be able to discern if the identification of analytes is due to true presence in the sampled environmental media or if contamination occurred during sample handling and analysis, leading to false positive detection. This is particularly important for VMS due to their ubiquity in consumer products, sample containers, and analytical instrumentation, thus requiring robust quality control (QC) procedures to support the validity of results. Although Lee et al. (2019) concluded that VMS in the environmental samples originated from potential long-range transport and deposition, it is most likely that local point sources account for their presence. Additionally, there is low confidence in the validity of the reported detection of VMS in the sampled environmental media as this study does not include any of the necessary QC to determine whether the VMS detected would be due to contamination or indicative of presence in the environment.


Asunto(s)
Ambiente , Svalbard
9.
Integr Environ Assess Manag ; 17(1): 282-291, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32770796

RESUMEN

To inform mitigation strategies and understand how microplastics affect wildlife, research is focused on understanding the sources, pathways, and occurrence of microplastics in the environment and in wildlife. Microplastics research entails counting and characterizing microplastics in nature, which is a labor-intensive process, particularly given the range of particle sizes and morphologies present within this diverse class of contaminants. Thus, it is crucial to determine appropriate sampling methods that best capture the types and quantities of microplastics relevant to inform the questions and objectives at hand. It is also critical to follow protocols with strict quality assurance and quality control (QA/QC) measures so that results reflect accurate estimates of microplastic contamination. Here, we assess different sampling procedures and QA/QC strategies to inform best practices for future environmental monitoring and assessments of exposure. We compare microplastic abundance and characteristics in surface-water samples collected using different methods (i.e., manta and bulk water) at the same sites, as well as duplicate samples for each method taken at the same site and approximate time. Samples were collected from 9 sampling sites within San Francisco Bay, California, USA, using 3 different sampling methods: 1) manta trawl (manta), 2) 1-L grab (grab), and 3) 10-L bulk water filtered in situ (pump). Bulk water sampling methods (both grab and pump) captured more microplastics within the smaller size range (<335 µm), most of which were fibers. Manta samples captured a greater diversity of morphologies but underestimated smaller-sized particles. Inspection of pump samples revealed high numbers of particles from procedural contamination, stressing the need for robust QA/QC, including sampling and analyzing laboratory blanks, field blanks, and duplicates. Choosing the appropriate sampling method, combined with rigorous, standardized QA/QC practices, is essential for the future of microplastics research in marine and freshwater ecosystems. Integr Environ Assess Manag 2021;17:282-291. © 2020 SETAC.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Medición de Riesgo , San Francisco , Contaminantes Químicos del Agua/análisis
10.
Metabolomics ; 16(10): 113, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33044703

RESUMEN

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) evolved from the recognized need for a community-wide consensus on improving and systematizing quality assurance (QA) and quality control (QC) practices for untargeted metabolomics. OBJECTIVES: In this work, we sought to identify and share the common and divergent QA and QC practices amongst mQACC members and collaborators who use liquid chromatography-mass spectrometry (LC-MS) in untargeted metabolomics. METHODS: All authors voluntarily participated in this collaborative research project by providing the details of and insights into the QA and QC practices used in their laboratories. This sharing was enabled via a six-page questionnaire composed of over 120 questions and comment fields which was developed as part of this work and has proved the basis for ongoing mQACC outreach. RESULTS: For QA, many laboratories reported documenting maintenance, calibration and tuning (82%); having established data storage and archival processes (71%); depositing data in public repositories (55%); having standard operating procedures (SOPs) in place for all laboratory processes (68%) and training staff on laboratory processes (55%). For QC, universal practices included using system suitability procedures (100%) and using a robust system of identification (Metabolomics Standards Initiative level 1 identification standards) for at least some of the detected compounds. Most laboratories used QC samples (>86%); used internal standards (91%); used a designated analytical acquisition template with randomized experimental samples (91%); and manually reviewed peak integration following data acquisition (86%). A minority of laboratories included technical replicates of experimental samples in their workflows (36%). CONCLUSIONS: Although the 23 contributors were researchers with diverse and international backgrounds from academia, industry and government, they are not necessarily representative of the worldwide pool of practitioners due to the recruitment method for participants and its voluntary nature. However, both questionnaire and the findings presented here have already informed and led other data gathering efforts by mQACC at conferences and other outreach activities and will continue to evolve in order to guide discussions for recommendations of best practices within the community and to establish internationally agreed upon reporting standards. We very much welcome further feedback from readers of this article.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Humanos , Laboratorios , Control de Calidad , Proyectos de Investigación , Encuestas y Cuestionarios
11.
Dentomaxillofac Radiol ; 49(6): 20190378, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302229

RESUMEN

OBJECTIVES: To quantify and validate the effect of pixel size on a digital intraoral radiographic system according to International Electrotechnical Commission standards through physical and visual evaluations. METHODS: The digital intraoral radiographic system used was the photostimulable phosphor imaging plate and scanner system. The system had three image capture modes: high-speed (HS), high-resolution (HR), and super high-resolution (SHR) with different pixels. The physical characteristics of the system were evaluated using presampled modulation transfer function (MTF) and the normalized noise power spectrum (NNPS). An aluminum (Al) step phantom with different depths of holes was used to acquire images under various exposure conditions. The average number of perceptible holes from all steps was plotted against each exposure dose. The results were compared to analyze the effects of pixel size on image quality of intraoral radiographs. RESULTS: The MTF was slightly higher with SHR than with HR and HS. The NNPS with SHR showed about a 40% decrease in magnitude compared to HS. The total number of perceptible holes in the Al step phantom was higher with SHR than with HS and HR in all exposure conditions. CONCLUSIONS: The MTF and NNPS obtained with different pixel size could be quantified by physical evaluation, and the differences were visually validated with Al step phantom. The SHR mode has the potential to decrease the radiation dose without compromising the image quality.


Asunto(s)
Intensificación de Imagen Radiográfica , Radiografía Dental Digital , Fantasmas de Imagen , Radiografía
12.
Anal Chim Acta ; 790: 1-13, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23870403

RESUMEN

Persistent organic pollutants (POPs) are major environmental concern due to their persistence, long-range transportability, bio-accumulation and potentially adverse effects on living organisms. Analytical chemistry plays an essential role in the measurement of POPs and provides important information on their distribution and environmental transformations. Much effort has been devoted during the last two decades to the development of faster, safer, more reliable and more sensitive analytical techniques for these pollutants. Since the Stockholm Convention (SC) on POPs was adopted 12 years ago, analytical methods have been extensively developed. This review article introduces recent analytical techniques and applications for the determination of POPs in environmental and biota samples, and summarizes the extraction, separation and instrumental analyses of the halogenated POPs. Also, this review covers important aspects for the analyses of SC POPs (e.g. lipid determination and quality assurance/quality control (QA/QC)), and finally discusses future trends for improving the POPs analyses and for potential new POPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA