Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(28): 33665-33674, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37430386

RESUMEN

Electrochemical selective two-electron oxygen reduction shows great potential for on-site electrochemical production of hydrogen peroxide (H2O2). Herein, we demonstrated the synthesis of Ni single-atom sites coordinated by three oxygen atoms and one nitrogen atom (i.e., Ni-N1O3) supported by oxidized carbon black (OCB) by pyrolyzing nickel-(pyridine-2,5-dicarboxylate) coordination complexes. Aberration-corrected scanning transmission electron microscopy (AC-STEM) combined with X-ray absorption spectroscopy (XAS) proves the presence of atomically dispersed Ni atoms attached on OCB (labeled as Ni-SACs@OCB), in which Ni single atoms are stabilized by a N, O-mediated coordination configuration. This Ni-SACs@OCB catalyst shows high H2O2 selectivity (95%) in a range of 0.2-0.7 V undergoing a two-electron oxygen reduction process, with a kinetic current density of 2.8 mA cm-2 and a mass activity of 24 A gcat.-1 at 0.65 V (vs RHE). In practice, H-cells with Ni-SACs@OCB as catalysts displayed a high H2O2 production rate of 98.5 mmol gcat.-1 h-1 with negligible current loss during testing, suggesting the high H2O2 generation efficiency and robust stability. DFT theoretical calculations revealed that Ni single-atom sites coordinated by O, N coordination exhibit advantages in oxygen adsorption and increased reactivity toward the intermediate species, *OOH, which is beneficial to high selectivity for H2O2 production. This work provides a novel N, O-mediated four-coordinate nickel single-atom catalyst as a promising candidate for practical decentralized production of H2O2.

2.
Molecules ; 26(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652837

RESUMEN

In search of anti-inflammatory compounds, novel scaffolds containing isonicotinoyl motif were synthesized via an efficient strategy. The compounds were screened for their in vitro anti-inflammatory activity. Remarkably high activities were observed for isonicotinates 5-6 and 8a-8b. The compound 5 exhibits an exceptional IC50 value (1.42 ± 0.1 µg/mL) with 95.9% inhibition at 25 µg/mL, which is eight folds better than the standard drug ibuprofen (11.2 ± 1.9 µg/mL). To gain an insight into the mode of action of anti-inflammatory compounds, molecular docking studies were also performed. Decisively, further development and fine tuning of these isonicotinates based scaffolds for the treatment of various aberrations is still a wide-open field of research.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Inflamación/tratamiento farmacológico , Ácidos Isonicotínicos/síntesis química , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Humanos , Ibuprofeno/química , Ácidos Isonicotínicos/química , Ácidos Isonicotínicos/farmacología , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/química , Relación Estructura-Actividad
3.
Artículo en Inglés | MEDLINE | ID: mdl-30685593

RESUMEN

We aim to develop a solid-phase extraction (SPE) based on a dummy molecularly imprinted polymer (MIP) and liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) for selective determination of four pyridine carboxylic acid herbicides (aminopyralid, picloram, fluroxypyr, and clopyralid) in milk samples. Using picloram as the dummy template, MIP nanocomposites with highly selective recognition and adsorption for the target molecule and its structural analogs were successfully synthesized by precipitation polymerization. Adsorption isotherms and kinetics were used to determine the adsorption performance and specific recognition mechanism of both MIPs and non-molecularly imprinted polymers (NIP). The Scatchard plot analysis revealed that two different binding sites were formed in the MIP with maximum binding capacity (Qmax) of 1171.8 µg·g-1 and 3022.5 µg·g-1, respectively. Recovery at three spiking levels of 10, 20, and 50 µg·L-1 ranged between 75.3 and 89.8% with relative standard deviations (RSDs) <14.3%.The limit of detection (LOD) was estimated to be 0.124 µg·L-1. Finally, the feasibility of the proposed methodology was successfully applied to quantify aminopyralid and another three pyridine carboxylic acid herbicides in milk.


Asunto(s)
Herbicidas/análisis , Leche/química , Piridinas/análisis , Acetatos/química , Animales , Ácidos Carboxílicos , Cromatografía Líquida de Alta Presión , Impresión Molecular , Ácidos Picolínicos/química , Polimerizacion , Piridinas/química , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
4.
Molecules ; 21(5)2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27136517

RESUMEN

The drug, di-2-pyridylketone-2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex (DPPCAH-Cu) exhibit significant antitumor activity. However, the mechanism of their pharmacological interaction with the biological molecule bovine serum albumin (BSA) remains poorly understood. The present study elucidates the interactions between the drug and BSA through MTT assays, spectroscopic methods and molecular docking analysis. Our results indicate that BSA could attenuate effect on the cytotoxicity of DPPCAH, but not DPPCAH-Cu. Data from fluorescence quenching measurements demonstrated that both DPPCAH and DPPCAH-Cu could bind to BSA, with a reversed effect on the environment of tryptophan residues in polarity. CD spectra revealed that the DPPCAH-Cu exerted a slightly stronger effect on the secondary structure of BSA than DPPCAH. The association constant of DPPCAH with BSA was greater than that of DPPCAH-Cu. Docking studies indicated that the binding of DPPCAH to BSA involved a greater number of hydrogen bonds compared to DPPCAH-Cu. The calculated distances between bound ligands and tryptophans in BSA were in agreement with fluorescence resonance energy transfer results. Thus, the binding affinity of the drug (DPPCAH or DPPCAH-Cu) with BSA partially contributes to its antitumor activity; the greater the drug affinity is to BSA, the less is its antitumor activity.


Asunto(s)
Cobre/química , Hidrazonas/farmacología , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Animales , Antineoplásicos , Bovinos , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Células Hep G2 , Humanos , Hidrazonas/química , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA