Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1865(4): 149150, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906313

RESUMEN

Photosystem II (PS II) assembly is a stepwise process involving preassembly complexes or modules focused around four core PS II proteins. The current model of PS II assembly in cyanobacteria is derived from studies involving the deletion of one or more of these core subunits. Such deletions may destabilize other PS II assembly intermediates, making constructing a clear picture of the intermediate events difficult. Information on plastoquinone exchange pathways operating within PS II is also unclear and relies heavily on computer-aided simulations. Deletion of PsbX in [S. Biswas, J.J. Eaton-Rye, Biochim. Biophys. Acta - Bioenerg. 1863 (2022) 148519] suggested modified QB binding in PS II lacking this subunit. This study has indicated the phenotype of the ∆PsbX mutant arose by disrupting a conserved hydrogen bond between PsbX and the D2 (PsbD) protein. We mutated two conserved arginine residues (D2:Arg24 and D2:Arg26) to further understand the observations made with the ∆PsbX mutant. Mutating Arg24 disrupted the interaction between PsbX and D2, replicating the high-light sensitivity and altered fluorescence decay kinetics observed in the ∆PsbX strain. The Arg26 residue, on the other hand, was more important for either PS II assembly or for stabilizing the fully assembled complex. The effects of mutating both arginine residues to alanine or aspartate were severe enough to render the corresponding double mutants non-photoautotrophic. Our study furthers our knowledge of the amino-acid interactions stabilizing plastoquinone-exchange pathways while providing a platform to study PS II assembly and repair without the actual deletion of any proteins.


Asunto(s)
Arginina , Proteínas Bacterianas , Complejo de Proteína del Fotosistema II , Plastoquinona , Synechocystis , Synechocystis/metabolismo , Synechocystis/genética , Plastoquinona/metabolismo , Plastoquinona/análogos & derivados , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Arginina/metabolismo , Mutación
2.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397082

RESUMEN

Brassicanate A sulfoxide, a secondary metabolite of broccoli, exhibited the inhibition of weed growth, but its mechanism of action on weeds remains unclear. To elucidate the mechanism by which brassicanate A sulfoxide suppresses weeds, this study explores the interaction between brassicanate A sulfoxide and the photosystem II D1 protein through molecular docking and molecular dynamics simulations. This research demonstrates that brassicanate A sulfoxide interacts with the photosystem II D1 protein by forming hydrogen bonds with Phe-261 and His-214. The successful expression of the photosystem II D1 protein in an insect cell/baculovirus system validated the molecular docking and dynamics simulations. Biolayer interferometry experiments elucidated that the affinity constant of brassicanate A sulfoxide with photosystem II was 2.69 × 10-3 M, suggesting that brassicanate A sulfoxide can stably bind to the photosystem II D1 protein. The findings of this study contribute to the understanding of the mode of action of brassicanate A sulfoxide and also aid in the development of natural-product-based photosynthesis-inhibiting herbicides.


Asunto(s)
Herbicidas , Herbicidas/química , Complejo de Proteína del Fotosistema II/metabolismo , Simulación del Acoplamiento Molecular , Fotosíntesis , Malezas/metabolismo , Sulfóxidos
3.
J Biomol NMR ; 77(4): 165-181, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37300639

RESUMEN

Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 µs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.


Asunto(s)
Amidas , Amidas/química , Resonancia Magnética Nuclear Biomolecular/métodos
4.
Front Plant Sci ; 13: 1019591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247583

RESUMEN

Plant suspension cells were treated with recombinant OsRIP1, a type 1 ribosome-inactivating protein (RIP) from rice (Oryza sativa L.). OsRIP1 triggered cell death in tobacco BY-2 cells but not in Arabidopsis PSB-D cells. Phenotypic changes in BY-2 cells exposed to OsRIP1, included loss of growth capacity, loss of integrity of the plasma membrane and vacuolar collapse. These effects were also accompanied by RNA degradation and DNA fragmentation. Targeting of exogenous OsRIP1 to plant vacuoles and OsRIP1-induced accumulation of transcripts for vacuolar processing enzymes (VPEs) indicated that OsRIP1 provoked plant cell death in tobacco BY-2 cells through the activation of VPEs and subsequent vacuolar disruption, which was probably independent of its N-glycosylase activity on cytosolic ribosomes. Necrosis with limited production of H2O2 was observed after infiltration of high concentrations of OsRIP1 in epidermal cells of Nicotiana tabacum cv. Samsun NN plants. Our study provides the first evidence that OsRIP1 exerts differential effects on the growth of PSB-D and BY-2 cells. The vacuole-dependent cell death pathway is associated with the lethal effect of the exogenously applied OsRIP1 on BY-2 cells.

5.
Acta Pharm Sin B ; 8(6): 981-994, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30505666

RESUMEN

Herein we describe the discovery and functional characterization of a steroidal glycosyltransferase (SGT) from Ornithogalum saundersiae and a steroidal glycoside acyltransferase (SGA) from Escherichia coli and their application in the biosynthesis of acylated steroidal glycosides (ASGs). Initially, an SGT gene, designated as OsSGT1, was isolated from O. saundersiae. OsSGT1-containing cell free extract was then used as the biocatalyst to react with 49 structurally diverse drug-like compounds. The recombinant OsSGT1 was shown to be active against both 3ß- and 17ß-hydroxyl steroids. Unexpectedly, in an effort to identify OsSGT1, we found the bacteria lacA gene in lac operon actually encoded an SGA, specifically catalyzing the acetylations of sugar moieties of steroid 17ß-glucosides. Finally, a novel enzymatic two-step synthesis of two ASGs, acetylated testosterone-17-O-ß-glucosides (AT-17ß-Gs) and acetylated estradiol-17-O-ß-glucosides (AE-17ß-Gs), from the abundantly available free steroids using OsSGT1 and EcSGA1 as the biocatalysts was developed. The two-step process is characterized by EcSGA1-catalyzed regioselective acylations of all hydroxyl groups on the sugar unit of unprotected steroidal glycosides (SGs) in the late stage, thereby significantly streamlining the synthetic route towards ASGs and thus forming four monoacylates. The improved cytotoxic activities of 3'-acetylated testosterone17-O-ß-glucoside towards seven human tumor cell lines were thus observable.

6.
Front Plant Sci ; 8: 1186, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28751898

RESUMEN

The transcription of photosynthesis genes encoded by the plastid genome is mainly mediated by a prokaryotic-type RNA polymerase called plastid-encoded plastid RNA polymerase (PEP). Standard PEP-dependent promoters resemble bacterial sigma-70-type promoters containing the so-called -10 and -35 elements. On the other hand, an unusual light- and stress-responsive promoter (psbD LRP) that is regulated by a 19-bp AAG-box immediately upstream of the -35 element has been mapped upstream of the psbD-psbC operon in some angiosperms. However, the occurrence of the AAG-box containing psbD LRP in plant evolution remains elusive. We have mapped the psbD promoters in eleven embryophytes at different evolutionary stages from liverworts to angiosperms. The psbD promoters were mostly mapped around 500-900 bp upstream of the psbD translational start sites, indicating that the psbD mRNAs have unusually long 5'-UTR extensions in common. The -10 elements of the psbD promoter are well-conserved in all embryophytes, but not the -35 elements. We found that the AAG-box sequences are highly conserved in angiosperms and gymnosperms except for gnetaceae plants. Furthermore, partial AAG-box-like sequences have been identified in the psbD promoters of some basal embryophytes such as moss, hornwort, and lycophyte, whereas liverwort has the standard PEP promoter without the AAG-box. These results suggest that the AAG-box sequences of the psbD LRP may have evolved from a primitive type of AAG-box of basal embryophytes. On the other hand, monilophytes (ferns) use another type of psbD promoter composed of a distinct cis-element upstream of the potential -35 element. Furthermore, we found that psbD expression is not regulated by light in gymnosperms or basal angiosperms, although they have the well-conserved AAG-box sequences. Thus, it is unlikely that acquisition of the AAG-box containing psbD promoter is directly associated with light-induced transcription of the psbD-psbC operon. Light- and stress-induced transcription may have evolved independently and multiple times during terrestrial plant evolution.

7.
Am J Bot ; 102(10): 1703-20, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26437887

RESUMEN

PREMISE OF THE STUDY: Many arctic-alpine species have vast geographic ranges, but these may encompass substantial gaps whose origins are poorly understood. Here we address the phylogeographic history of Silene acaulis, a perennial cushion plant with a circumpolar distribution except for a large gap in Siberia. METHODS: We assessed genetic variation in a range-wide sample of 103 populations using plastid DNA (pDNA) sequences and AFLPs (amplified fragment length polymorphisms). We constructed a haplotype network and performed Bayesian phylogenetic analyses based on plastid sequences. We visualized AFLP patterns using principal coordinate analysis, identified genetic groups using the program structure, and estimated genetic diversity and rarity indices by geographic region. KEY RESULTS: The history of the main pDNA lineages was estimated to span several glaciations. AFLP data revealed a distinct division between Beringia/North America and Europe/East Greenland. These two regions shared only one of 17 pDNA haplotypes. Populations on opposite sides of the Siberian range gap (Ural Mountains and Chukotka) were genetically distinct and appear to have resulted from postglacial leading-edge colonizations. We inferred two refugia in North America (Beringia and the southern Rocky Mountains) and two in Europe (central-southern Europe and northern Europe/East Greenland). Patterns in the East Atlantic region suggested transoceanic long-distance dispersal events. CONCLUSIONS: Silene acaulis has a highly dynamic history characterized by vicariance, regional extinction, and recolonization, with persistence in at least four refugia. Long-distance dispersal explains patterns across the Atlantic Ocean, but we found no evidence of dispersal across the Siberian range gap.


Asunto(s)
Extinción Biológica , Dispersión de las Plantas , Polimorfismo Genético , Silene/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Regiones Árticas , Teorema de Bayes , ADN de Cloroplastos/genética , Datos de Secuencia Molecular , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Silene/genética
8.
Plant J ; 82(6): 1030-1041, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25976841

RESUMEN

Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Genes del Cloroplasto , Guanosina Tetrafosfato/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Factor sigma/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Guanosina Difosfato/metabolismo , Mutación , Fosfoproteínas Fosfatasas/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteína Fosfatasa 2C , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor sigma/genética
9.
Physiol Plant ; 102(1): 49-54, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35359120

RESUMEN

In order to examine whether the decrease in gene expression of chloroplast DNA-encoded polypetides contributes to the inhibition of photosystem II (PSII) function during water stress, changes in transcript and template levels of chloroplast psbA and psbD genes (encoding the D1 and D2 reaction center proteins of PSII, respectively) were investigated in spring wheat leaves (Triticum aestivum L. cv. Longchun No. 10) using northern, Southern and dot blot analyses. The results of northern hybridization indicated that stressing wheat seedlings in polyethylene glycol (PEG) solutions with an osmotic potential of -0.5 MPa for 0, 24, 48 and 72 h, caused marked declines in the steady state levels of the psbA and psbD transcripts but did not alter their transcript processing patterns. RNA dot blot analysis further demonstrated that over the whole range of water stress investigated, the transcript levels of the two genes declined by 2- and 3-fold, respectively, relative to the same amount of total RNA. As total RNA decreased 3-fold during the process of stress, the transcript levels of psbA and psbD genes actually declined by 6- and 9-fold, respectively. These results suggest that water stress affects the expression of the psbA and psbD genes, possibly at the transcriptional level. Southern and DNA dot blot analyses consistently showed that water stress did not affect the template levels of either psbA or psbD genes, suggesting that the decreased abundance of psbA and psbD transcripts under water stress is not due to limited gene templates but likely a result of lowered gene transcriptional activity and/or changed mRNA stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA