Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(22): 4929-4939, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980330

RESUMEN

Exhaled breath volatilomics is a powerful non-invasive tool for biomarker discovery in medical applications, but compound annotation is essential for pathophysiological insights and technology transfer. This study was aimed at investigating the interest of a hybrid approach combining real-time proton transfer reaction-time-of-flight mass spectrometry (PTR-TOF-MS) with comprehensive thermal desorption-two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (TD-GCxGC-TOF-MS) to enhance the analysis and characterization of VOCs in clinical research, using COVID-19 as a use case. VOC biomarker candidates were selected from clinical research using PTR-TOF-MS fingerprinting in patients with COVID-19 and matched to the Human Breathomic Database. Corresponding analytical standards were analysed using both a liquid calibration unit coupled to PTR-TOF-MS and TD-GCxGC-TOF-MS, together with confirmation on new clinical samples with TD-GCxGC-TOF-MS. From 26 potential VOC biomarkers, 23 were successfully detected with PTR-TOF-MS. All VOCs were successfully detected using TD-GCxGC-TOF-MS, providing effective separation of highly chemically related compounds, including isomers, and enabling high-confidence annotation based on two-dimensional chromatographic separation and mass spectra. Four VOCs were identified with a level 1 annotation in the clinical samples. For future applications, the combination of real-time PTR-TOF-MS and comprehensive TD-GCxGC-TOF-MS, at least on a subset of samples from a whole study, would enhance the performance of VOC annotation, offering potential advancements in biomarker discovery for clinical research.


Asunto(s)
Biomarcadores , Pruebas Respiratorias , COVID-19 , Compuestos Orgánicos Volátiles , Humanos , Pruebas Respiratorias/métodos , Biomarcadores/análisis , Compuestos Orgánicos Volátiles/análisis , COVID-19/diagnóstico , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Espiración , SARS-CoV-2
2.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999193

RESUMEN

Kaffir lime juice, often treated as production waste, can be a good source of terpenes. These compounds undergo various decomposition processes under the influence of external factors, especially during transportation and storage. In this paper, it was possible to monitor changes in the terpene profile of kaffir lime juice under different storage conditions, namely, 4 °C, 20 °C, and 35 °C. The identification of key decomposition products was achieved using gas chromatography-mass spectrometry (GC-MS) and a data mining protocol. It was followed by tracing those products in different storage conditions using a high-throughput proton transfer reaction mass spectrometry (PTR-MS) approach. Based on our findings, degradation pathways were presented, showing that the main products resulting from storage are p-cymene, p-cymenene, terpinene-4-ol, and α-terpineol. It was shown that conversion to p-cymenene occurs after 5 days of storage. Terpinene-4-ol and α-terpineol were found to be the final products of the conversion at all temperatures. Changes in the composition of terpenes are important from the point of view of their bioactive properties.


Asunto(s)
Jugos de Frutas y Vegetales , Cromatografía de Gases y Espectrometría de Masas , Terpenos , Terpenos/química , Terpenos/análisis , Jugos de Frutas y Vegetales/análisis , Protones , Almacenamiento de Alimentos
3.
J Environ Manage ; 364: 121453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38875988

RESUMEN

Animal manure is considered a valuable organic fertilizer due to its important nutrient content enhancing soil fertility and plant growth in agriculture. Besides its beneficial role as fertilizer, animal manure represents a significant source of volatile organic compounds (VOCs), playing a significant role in atmospheric chemistry. Understanding the composition of VOCs Understanding VOCs from animal manure is crucial for assessing their environmental impact, as they can cause air pollution, odors, and harm to human health and ecosystems. Laboratory studies enhance field measurements by providing a precise inventory of manure emissions, addressing gaps in existing literature. Both approaches complement each other in advancing our understanding of manure emissions. In this context, we conducted an experimental study involving various animal manures (cow, horse, sheep, and goat) taken from a farm in Grignon (near Paris, France). We employed atmospheric simulation chambers within a controlled laboratory environment. The analysis of VOCs involved the combination of Proton Transfer Reaction-Quadrupole ion guide-Time-of-Flight Mass Spectrometry (PTR-QiTOF-MS) and Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Using PTR-QiTOF-MS, 368 compounds were detected and quantified within the manure samples. The complementary analysis by TD-GC-MS enhanced our identification of VOCs. Our findings revealed various chemical groups of VOCs, including oxygenated compounds (e.g., ethanol, cresol, acetaldehyde, etc.), nitrogenated compounds (ammonia, trimethylamine, etc.), sulfur compounds (methanethiol, dimethyl sulfide, etc.), aromatic compounds (phenols and indoles), terpenes (isoprene, D-limonene, etc.) and halogenated compounds. Cow manure exhibited the highest VOC emission fluxes, followed by goat, sheep, and horse manures. Notably, oxygenated VOCs were dominant contributors to total VOC emission fluxes in all samples. Statistical analysis highlighted the distinct nature of cow manure emissions, characterized by oxygenated compounds and nitrogenated compounds. In addition, goat manure was isolated from the other samples with high emissions of compounds having both oxygen and nitrogen atoms in their molecular formulas (e.g., CH3NO2). The experimental dataset obtained in this study provides an inventory reference for both VOCs and their emission fluxes in animal manures. Furthermore, it highlights odorant compounds and VOCs that serve as atmospheric aerosol precursor. Future studies can explore the effectiveness of various manure treatment methods to promote sustainable agriculture practices.


Asunto(s)
Estiércol , Compuestos Orgánicos Volátiles , Estiércol/análisis , Compuestos Orgánicos Volátiles/análisis , Animales , Cromatografía de Gases y Espectrometría de Masas , Bovinos
4.
Food Chem ; 449: 139211, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581789

RESUMEN

Fermentation is the key process to determine the quality of black tea. Traditional physical and chemical analyses are time consuming, it cannot meet the needs of online monitoring. The existing rapid testing techniques cannot determine the specific volatile organic compounds (VOCs) produced at different stages of fermentation, resulting in poor model transferability; therefore, the current degree of black tea fermentation mainly relies on the sensory judgment of tea makers. This study used proton transfer reaction mass spectrometry (PTR-MS) and fourier transform infrared spectroscopy (FTIR) combined with different injection methods to collect VOCs of the samples, the rule of change of specific VOCs was clarified, and the extreme learning machine (ELM) model was established after principal component analysis (PCA), the prediction accuracy reached 95% and 100%, respectively. Finally, different application scenarios of the two technologies in the actual production of black tea are discussed based on their respective advantages.


Asunto(s)
Camellia sinensis , Fermentación , Espectrometría de Masas , , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Té/química , Espectrometría de Masas/métodos , Camellia sinensis/química , Camellia sinensis/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis de Componente Principal
5.
Food Res Int ; 181: 114078, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448095

RESUMEN

The effects of α-amylase on of flavor perception were investigated via spectrum analysis, electronic tongue, on-line mass spectrometry, and molecular docking. Aroma release results showed that α-amylase exhibited variable release patterns of different aroma compounds. Electronic tongue analysis showed that the perception of bitterness, sweetness, sour, and saltiness was subtly increased and that of umami was significantly increased (p < 0.01) along with the increasing enzyme activity of α-amylase. Ultraviolet absorption and fluorescence spectroscopy analyses showed that static quenching occurred between α-amylase and eight flavor compounds and their interaction effects were spontaneous. One binding pocket was confirmed between the α-amylase and flavor compounds, and molecular docking simulation results showed that the hydrogen, electrostatic, and hydrophobic bonds were the main force interactions. The TYP82, TRP83, LEU173, HIS80, HIS122, ASP297, ASP206, and ARG344 were the key α-amylase amino acid residues that interacted with the eight flavor compounds.


Asunto(s)
Protones , alfa-Amilasas , Simulación del Acoplamiento Molecular , Nariz Electrónica , Espectrometría de Masas , Aminoácidos , Percepción
6.
Foods ; 13(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397597

RESUMEN

Determination of Occidental pear (Pyrus communis) ripening is difficult because the appearance of Occidental pears does not change significantly during the ripening process. Occidental pears at different ripening stages release different volatile organic compounds (VOCs), which can be used to determine fruit ripeness non-destructively and rapidly. In this study, VOCs were detected using proton-transfer-reaction mass spectrometry (PTR-MS). Notably, data were acquired within 1 min. Occidental pears harvested at five separate times were divided into three ripening stages: unripe, ripe, and overripe. The results showed that the composition of VOCs differed depending on the ripening stage. In particular, the concentrations of esters and terpenes significantly increased during the overripe stage. Three ripening stages were clearly discriminated by heatmap clustering and principal component analysis (PCA). This study provided a rapid and non-destructive method to evaluate the ripening stages of Occidental pears. The result can help fruit farmers to decide the optimum harvest time and hence reduce their economic losses.

7.
J Chem Ecol ; 50(3-4): 129-142, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195852

RESUMEN

Biogenic volatile organic compounds (bVOCs), synthesised by plants, are important mediators of ecological interactions that can also undergo a series of reactions in the atmosphere. Ground-level ozone is a secondary pollutant generated through sunlight-driven reactions between nitrogen oxides (NOx) and VOCs. Its levels have increased since the industrial revolution and reactions involving ozone drive many chemical processes in the troposphere. While ozone precursors often originate in urban areas, winds may carry these hundreds of kilometres, causing ozone formation to also occur in less populated rural regions. Under elevated ozone conditions, ozonolysis of bVOCs can result in quantitative and qualitative changes in the gas phase, reducing the concentrations of certain bVOCs and resulting in the formation of other compounds. Such changes can result in disruption of bVOC-mediated behavioural or ecological interactions. Through a series of gas-phase experiments using Gas Chromatography Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS), we investigated the products and their yields from the ozonolysis of a range of ubiquitous bVOCs, which were selected because of their importance in mediating ecological interactions such as pollinator and natural enemy attraction and plant-to-plant communication, namely: (E)-ß-ocimene, isomers of α and ß-farnesene, α-terpinene and 6-methyl-5-hepten-2-one. New products from the ozonolysis of these compounds were identified, and the formation of these compounds is consistent with terpene-ozone oxidation mechanisms. We present the degradation mechanism of our model bVOCs and identify their reaction products. We discuss the potential ecological implications of the degradation of each bVOC and of the formation of reaction products.


Asunto(s)
Monoterpenos Acíclicos , Alquenos , Cetonas , Ozono , Sesquiterpenos , Compuestos Orgánicos Volátiles , Ozono/química , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Alquenos/química , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Atmósfera/química , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos Ciclohexánicos/química , Cromatografía de Gases y Espectrometría de Masas , Isomerismo , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis
8.
Food Chem ; 423: 136308, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37182490

RESUMEN

Aroma is a key factor used to evaluate tea quality. Illegal traders usually add essence to expired or substandard tea to improve its aroma so as to gain more profit. Traditional physical and chemical testing methods are time-consuming and costly. Furthermore, rapid detection techniques, such as near-infrared spectroscopy and machine vision, can only be used to detect adulterated powdered solid essences in tea. In this study, proton-transfer reaction mass spectrometry (PTR-MS) and Fourier-transform infrared spectroscopy (FTIR) were employed to detect volatile organic compounds (VOCs) in samples, and rapid detection of different tea adulterated liquid essence was achieved. The prediction accuracies of PTR-MS and FTIR reached over 0.941 and 0.957, respectively, and the minimum detection limits were lower than the actual used values in both. In this study, the different application scenarios of the two technologies are discussed based on their performance characteristics.


Asunto(s)
Compuestos Orgánicos Volátiles , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos Orgánicos Volátiles/análisis , Protones , Espectrometría de Masas/métodos , Té/química
9.
J Breath Res ; 17(2)2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36596256

RESUMEN

Isoprene is one of the most abundant and most frequently evaluated volatile organic compounds in exhaled breath. Recently, several individuals with background levels of exhaled isoprene have been identified. Here, case study data are provided for an individual, identified from a previous study, with this low prevalence phenotype. It is hypothesized that the individual will illustrate low levels of exhaled isoprene at rest and during exercise. At rest, the subject (7.1 ppb) shows background (µ= 14.2 ± 7.0 ppb) levels of exhaled isoprene while the control group illustrates significantly higher quantities (µ= 266.2 ± 72.3 ppb) via proton transfer reaction mass spectrometry (PTR-MS). The result, background levels of isoprene at rest, is verified by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) collections with the individual showing -3.6 ppb exhaled isoprene while the room background containedµ= -4.1 ± 0.1 ppb isoprene. As isoprene has been shown previously to increase at the initiation of exercise, exercise bike experiments were performed with the individual identified with low isoprene, yielding low and invariant levels of exhaled isoprene (µ= 6.6 ± 0.1 ppb) during the exercise while control subjects illustrated an approximate 2.5-fold increase (preµ= 286.3 ± 43.8 ppb, exerciseµ= 573.0 ± 147.8 ppb) in exhaled isoprene upon exercise start. Additionally, exhaled breath bag data showed a significant decrease in isoprene (delta post/pre, p = 0.0078) of the control group following the exercise regimen. Finally, TD-GC-MS results for exhaled isoprene from the individual's family (mother, father, sister and maternal grandmother) illustrated that the mother and father exhibited isoprene values (28.5 ppb, 77.2 ppb) below control samples 95% confidence interval (µ= 166.8 ± 43.3 ppb) while the individual's sister (182.0 ppb) was within the control range. These data provide evidence for a large dynamic range in exhaled isoprene in this family. Collectively, these results provide additional data surrounding the existence of a small population of individuals with background levels of exhaled isoprene.


Asunto(s)
Pruebas Respiratorias , Butadienos , Pruebas Respiratorias/métodos , Espectrometría de Masas/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Butadienos/análisis , Hemiterpenos/análisis , Espiración
10.
Food Res Int ; 161: 111885, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192996

RESUMEN

Sourdough bread has a complex flavour profile, which is strongly influenced by the compounds generated during fermentation by the diverse array of microorganisms present, mainly yeasts and lactic acid bacteria (LAB). Twelve complex sourdough cultures, comprised of mixtures of yeast and bacteria, were propagated using wholemeal flour and used in the production of sourdough breads. The volatile organic compounds (VOCs) present in the sourdough bread crumb were characterised by gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction-mass spectrometry (PTR-MS). Multiple factor analysis (MFA) relating the VOCs and physicochemical features of the sourdough breads (pH, TTA, lactic acid, colour and size) identified three distinct clusters. Cluster 1 was distinguished by VOCs, such as ethanol, 3-methyl-1-butanol, phenylethanol, 2-methyl-1-propanol, acetaldehyde and 2,3-butanedione, along with size related measures and increased production of lactic acid, indicating that yeast activity and homofermentative or facultative heterofermentative LAB were dominant. In contrast, cluster 2 was associated with acetic acid and acetate esters along with acidity related measures indicating a dominance of obligate heterofermentative LAB. Cluster 3 was also related to yeast fermentation activity, but particularly fermentation of lipids with greater production of aldehydes and lactones. The distinct differences between clusters of sourdough breads in their volatile and non-volatile features could be attributed to their fermentation activity and whether the culture was dominated by yeast or the different classes of LAB.


Asunto(s)
Lactobacillales , Alcohol Feniletílico , Compuestos Orgánicos Volátiles , Acetaldehído , Ácido Acético/análisis , Aldehídos , Pan/análisis , Diacetil , Fermentación , Ácido Láctico , Lactobacillus , Lactonas , Protones , Saccharomyces cerevisiae , Triticum/microbiología , Compuestos Orgánicos Volátiles/análisis
11.
J Hazard Mater ; 435: 128979, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35472544

RESUMEN

Identification of air toxics emitted from light-duty gasoline vehicles (LDGVs) is expected to better protect human health. Here, the volatile organic compound (VOC) and intermediate VOC (IVOC) emissions in the high-emitted start stages were measured on a chassis dynamometer under normal and extreme temperatures for China 6 LDGVs. Low temperature enhanced the emission rates (ERs) of both VOCs and IVOCs. The VOC ERs were averaged 5.19 ± 2.74 times higher when the temperature dropped from 23 °C to 0 °C, and IVOCs were less sensitive to temperature change with an enlargement of 2.27 ± 0.19 times. Aromatics (46.75 ± 2.83%) and alkanes (18.46 ± 1.21%) dominated the cold start VOC emissions under normal temperature, which was quite different from hot running emission profiles. From the perspective of emission inventories, changes in the speciated composition of VOCs and IVOCs were less important than that in the actual magnitude of ERs under cold conditions. However, changes in the ERs and emission profiles were equally important at high temperatures. Furthermore, high time-resolved measurements revealed that low temperature enhanced both the emission peak and peak duration of fuel components and incomplete combustion products during cold start, while high temperature only increased the peak concentration of fuel components.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Gasolina/análisis , Humanos , Vehículos a Motor , Temperatura , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
12.
Molecules ; 27(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35335227

RESUMEN

Low-calorie and low-fat foods have been introduced to the market to fight the increasing incidence of overweightness and obesity. New approaches and high-quality fat replacers may overcome the poor organoleptic properties of such products. A model of processed cheese spread (PCS) was produced as a full-fat version and with three levels of fat reduction (30%, 50%, and 70%). Fat was replaced by water or by corn dextrin (CD), a dietary fiber. Additionally, in the 50% reduced-fat spreads, fat was replaced by various ratios of CD and lactose (100:0, 75:25, 50:50, 25:75, and 0:100). The effect of each formulation was determined by measuring the textural (firmness, stickiness, and spreadability), rheological (flow behavior and oscillating rheology), tribological, and microstructural (cryo-SEM) properties of the samples, as well as the dynamic aroma release of six aroma compounds typically found in cheese. Winter's critical gel theory was a good approach to characterizing PCS with less instrumental effort and costs: the gel strength and interaction factors correlated very well with the spreadability and lubrication properties of the spreads. CD and fat exhibited similar interaction capacities with the aroma compounds, resulting in a similar release pattern. Overall, the properties of the sample with 50% fat replaced by CD were most similar to those of the full-fat sample. Thus, CD is a promising fat replacer in PCS and, most likely, in other dairy-based emulsions.


Asunto(s)
Queso , Queso/análisis , Dextrinas , Odorantes , Reología , Zea mays
13.
Foods ; 11(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35327243

RESUMEN

Reduced-fat food products can help manage diet-related health issues, but consumers often link them with poor sensory qualities. Thus, high-quality fat replacers are necessary to develop appealing reduced-fat products. A full-fat model emulsion was reduced in fat by replacing fat with either water, lactose, corn dextrin (CD), inulin, polydextrose, or microparticulated whey protein (MWP) as fat replacers. The effect of fat reduction and replacement, as well as the suitability of different types of fat replacers, were determined by analyzing fat droplet size distribution, composition, rheological and tribological properties, and the dynamic aroma release of six aroma compounds prevalent in cheese and other dairy products. None of the formulations revealed a considerable effect on droplet size distribution. MWP strongly increased the Kokini oral shear stress and viscosity, while CD exhibited similar values to the full-fat emulsion. All four fat replacers improved the lubricity of the reduced-fat samples. Butane-2,3-dione and 3-methylbutanoic acid were less affected by the changes in the formulation than butanoic acid, heptan-2-one, ethyl butanoate, and nonan-2-one. The aroma releases of the emulsions comprising MWP and CD were most similar to that of the full-fat emulsion. Therefore, CD was identified as a promising fat replacer for reduced-fat emulsions.

14.
Mass Spectrom (Tokyo) ; 11(1): A0112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713805

RESUMEN

Proton-transfer-reaction (PTR) mass spectrometry (MS), a widely used method for detecting trace-levels of volatile organic compounds in gaseous samples, can also be used for the analysis of small non-volatile molecules by using supercritical fluid as a transporter for the molecules. Supercritical fluid extraction (SFE) is a method that permits lipophilic compounds to be rapidly and selectively extracted from complex matrices. The combination of the high sensitivity of PTR MS with the SFE is a potentially novel method for analyzing small molecules in a single cell, particularly for the analysis of lipophilic compounds. We preliminarily evaluated this method for analyzing the components of a single HeLa cell that is fixed on a stainless steel frit and is then directly introduces the SFE extracts into the PTR MS. A total of 200/91 ions were observed in positive/negative ion mode time-of-flight mass spectra, and the masses of 11/10 ions could be matched to chemical formulae obtained from the LipidMaps lipids structure database. Using various authentic lipophilic samples, the method could be used to detect free fatty acids in the sub-femtomole to femtomole order in the negative ion mode, the femtomole to sub-picomole order for fat-soluble vitamins, and the picomole order for poly aromatic hydrocarbons in both the positive and negative ion mode.

15.
Front Psychiatry ; 13: 1061326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590606

RESUMEN

Background: Major depressive disorder (MDD) is one of the most common psychiatric disorders with multifactorial etiologies. Metabolomics has recently emerged as a particularly potential quantitative tool that provides a multi-parametric signature specific to several mechanisms underlying the heterogeneous pathophysiology of MDD. The main purpose of the present study was to investigate possibilities and limitations of breath-based metabolomics, breathomics patterns to discriminate MDD patients from healthy controls (HCs) and identify the altered metabolic pathways in MDD. Methods: Breath samples were collected in Tedlar bags at awakening, 30 and 60 min after awakening from 26 patients with MDD and 25 HCs. The non-targeted breathomics analysis was carried out by proton transfer reaction mass spectrometry. The univariate analysis was first performed by T-test to rank potential biomarkers. The metabolomic pathway analysis and hierarchical clustering analysis (HCA) were performed to group the significant metabolites involved in the same metabolic pathways or networks. Moreover, a support vector machine (SVM) predictive model was built to identify the potential metabolites in the altered pathways and clusters. The accuracy of the SVM model was evaluated by receiver operating characteristics (ROC) analysis. Results: A total of 23 differential exhaled breath metabolites were significantly altered in patients with MDD compared with HCs and mapped in five significant metabolic pathways including aminoacyl-tRNA biosynthesis (p = 0.0055), branched chain amino acids valine, leucine and isoleucine biosynthesis (p = 0.0060), glycolysis and gluconeogenesis (p = 0.0067), nicotinate and nicotinamide metabolism (p = 0.0213) and pyruvate metabolism (p = 0.0440). Moreover, the SVM predictive model showed that butylamine (p = 0.0005, pFDR=0.0006), 3-methylpyridine (p = 0.0002, pFDR = 0.0012), endogenous aliphatic ethanol isotope (p = 0.0073, pFDR = 0.0174), valeric acid (p = 0.005, pFDR = 0.0162) and isoprene (p = 0.038, pFDR = 0.045) were potential metabolites within identified clusters with HCA and altered pathways, and discriminated between patients with MDD and non-depressed ones with high sensitivity (0.88), specificity (0.96) and area under curve of ROC (0.96). Conclusion: According to the results of this study, the non-targeted breathomics analysis with high-throughput sensitive analytical technologies coupled to advanced computational tools approaches offer completely new insights into peripheral biochemical changes in MDD.

16.
Food Chem ; 373(Pt B): 131467, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34753663

RESUMEN

The present study aims to reveal the molecular mechanisms underlying aroma persistence, as it plays a major role in food appreciation and quality. A multidisciplinary approach including ex vivo experiments using a novel model of oral mucosa and saliva as well as in vivo dynamic instrumental and sensory experiments was applied. Ex vivo results showed a reduction in aroma release between 7 and 86% in the presence of the thin layer of salivary proteins covering the oral mucosa (mucosal pellicle). This reduction was explained by hydrophobic interactions involving the mucosal pellicle and by the ability of oral cells and saliva to metabolize specific aroma compounds. The in vivo evaluation of exhaled air and perception confirmed the ex vivo findings. In conclusion, this work reveals the need to consider physiological reactions occurring during food oral processing to better understand aroma persistence and open new avenues of research.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Mucosa Bucal , Saliva , Proteínas y Péptidos Salivales
17.
Food Chem ; 373(Pt B): 131502, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34753076

RESUMEN

Transglutaminase-induced cross-linking has been suggested as a strategy to govern surimi gels' texture. To achieve the aroma regulation of surimi gels by cross-links, surimi gels were treated with microbial transglutaminase to get different cross-linking degrees, and in vivo and in vitro aroma releases were investigated by a proton transfer reaction-mass spectrometry (PTR-MS). Seventeen compounds in surimi gels were detected by PTR-MS. The in vitro release curves of odorants were fitted by a pseudo-first-order kinetics model. As the cross-links increased, most aroma compounds' released concentrations and release rates decreased first, and then increased significantly (P < 0.05) when the cross-linking degree exceed around 35.4%, negatively related to the springiness and the gel strength of surimi gels. However, the in vivo aroma release results showed that the harder surimi gel released fewer aroma compounds. In conclusion, texture affected by cross-links could be a strategy to control the aroma release of surimi gels.


Asunto(s)
Productos Pesqueros , Odorantes , Productos Pesqueros/análisis , Geles , Espectrometría de Masas , Odorantes/análisis , Protones
18.
Food Chem ; 364: 130404, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34175628

RESUMEN

Volatile compounds carry valuable information regarding the properties of foodstuffs. Volatiles emitted from food can be used as, for example, indicators of quality, shelf-life, or authenticity. A better understanding of the multitude of transformations which occur during food processing could facilitate the optimisation of production, increase the desirability of food products, and also their wholesomeness. However, as some of these transformations are fast-paced, it is necessary to monitor them using techniques which enable real-time determination of volatiles, such as proton transfer reaction-mass spectrometry (PTR-MS). Recent years have seen a marked increase in its use in food analysis, since it can be used to obtain insight into the dynamics of the monitored processes and can be the basis for precise quality control methods for food processing. This review highlights recent works in which PTR-MS was used in monitoring during foodstuffs production, preparation and storage.


Asunto(s)
Compuestos Orgánicos Volátiles , Análisis de los Alimentos , Manipulación de Alimentos , Espectrometría de Masas , Protones , Compuestos Orgánicos Volátiles/análisis
19.
Artículo en Inglés | MEDLINE | ID: mdl-34067803

RESUMEN

(1) Background: Mathematical exposure modeling of volatile organic compounds (VOCs) in consumer spray products mostly assumes instantaneous mixing in a room. This well-mixed assumption may result in the uncertainty of exposure estimation in terms of spatial resolution. As the inhalation exposure to chemicals from consumer spray products may depend on the spatial heterogeneity, the degree of uncertainty of a well-mixed assumption should be evaluated under specific exposure scenarios. (2) Methods: A room for simulation was divided into eight compartments to simulate inhalation exposure to an ethanol trigger and a propellant product. Real-time measurements of the atmospheric concentration in a room-sized chamber by proton transfer reaction mass spectrometry were compared with mathematical modeling to evaluate the non-homogeneous distribution of chemicals after their application. (3) Results: The well-mixed model overestimated short-term exposure, particularly under the trigger spray scenario. The uncertainty regarding the different chemical proportions in the trigger did not significantly vary in this study. (4) Conclusions: Inhalation exposure to aerosol generating sprays should consider the spatial uncertainty in terms of the estimation of short-term exposure.


Asunto(s)
Exposición por Inhalación , Compuestos Orgánicos Volátiles , Aerosoles , Exposición por Inhalación/análisis , Espectrometría de Masas , Incertidumbre
20.
Molecules ; 26(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672898

RESUMEN

The research concerns the use of proton transfer reaction mass spectrometer to track real-time emissions of volatile secondary oxidation products released from rapeseed oil as a result of deep-frying of potato cubes. Therefore, it was possible to observe a sudden increase of volatile organic compound (VOC) emissions caused by immersion of the food, accompanied by a sudden release of steam from a potato cube and a decrease of the oil temperature by more than 20 °C. It was possible to identify and monitor the emission of major secondary oxidation products such as saturated and unsaturated aldehydes, namely acrolein, pentanal, 2-hexenal, hexanal, 2-nonenal and 2-decenal. Each of them has an individual release characteristic. Moreover, the impact of different initial frying temperatures on release kinetics was investigated. Subsequently, it was possible to approximate the cumulative emission by a second-degree polynomial (R2 ≥ 0.994). Using the proposed solution made it possible for the first time to observe the impact of the immersion of food in vegetable oil on the early emission of thermal degradation products oil.


Asunto(s)
Culinaria , Aceite de Brassica napus/química , Compuestos Orgánicos Volátiles/análisis , Cinética , Oxidación-Reducción , Solanum tuberosum/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA