Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Magn Reson Med ; 92(1): 15-27, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501903

RESUMEN

Proton resonance frequency shift (PRFS) MR thermometry is the most common method used in clinical thermal treatments because of its fast acquisition and high sensitivity to temperature. However, motion is the biggest obstacle in PRFS MR thermometry for monitoring thermal treatment in moving organs. This challenge arises because of the introduction of phase errors into the PRFS calculation through multiple methods, such as image misregistration, susceptibility changes in the magnetic field, and intraframe motion during MRI acquisition. Various approaches for motion correction have been developed for real-time, motion-robust, and volumetric MR thermometry. However, current technologies have inherent trade-offs among volume coverage, processing time, and temperature accuracy. These tradeoffs should be considered and chosen according to the thermal treatment application. In hyperthermia treatment, precise temperature measurements are of increased importance rather than the requirement for exceedingly high temporal resolution. In contrast, ablation procedures require robust temporal resolution to accurately capture a rapid temperature rise. This paper presents a comprehensive review of current cutting-edge MRI techniques for motion-robust MR thermometry, and recommends which techniques are better suited for each thermal treatment. We expect that this study will help discern the selection of motion-robust MR thermometry strategies and inspire the development of motion-robust volumetric MR thermometry for practical use in clinics.


Asunto(s)
Imagen por Resonancia Magnética , Movimiento (Física) , Humanos , Imagen por Resonancia Magnética/métodos , Termometría/métodos , Termografía/métodos , Algoritmos , Hipertermia Inducida , Artefactos
2.
Bioengineering (Basel) ; 10(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38002423

RESUMEN

Proton resonance frequency shift (PRFS) is an MRI-based simple temperature mapping method that exhibits higher spatial and temporal resolution than temperature mapping methods based on T1 relaxation time and diffusion. PRFS temperature measurements are validated against fiber-optic thermal sensors (FOSs). However, the use of FOSs may introduce temperature errors, leading to both underestimation and overestimation of PRFS measurements, primarily due to material susceptibility changes caused by the thermal sensors. In this study, we demonstrated susceptibility-corrected PRFS (scPRFS) with a high frame rate and accuracy for suitably distributed temperatures. A single-echo-based background removal technique was employed for phase variation correction, primarily owing to magnetic susceptibility, which enabled fast temperature mapping. The scPRFS was used to validate the temperature fidelity by comparing the temperatures of fiber-optic sensors and conventional PRFS through phantom-mimicked human and ex vivo experiments. This study demonstrates that scPRFS measurements in agar-gel are in good agreement with the thermal sensor readings, with a root mean square error (RMSE) of 0.33-0.36 °C in the phantom model and 0.12-0.16 °C in the ex vivo experiment. These results highlight the potential of scPRFS for precise thermal monitoring and ablation in both low- and high-temperature non-invasive therapies.

3.
Int J Hyperthermia ; 40(1): 2184399, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36907223

RESUMEN

PURPOSE: MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS: MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS: The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION: For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.


Asunto(s)
Hipertermia Inducida , Termometría , Humanos , Termometría/métodos , Hipertermia Inducida/métodos , Fantasmas de Imagen , Encéfalo , Imagen por Resonancia Magnética/métodos
4.
NMR Biomed ; 36(8): e4933, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36941216

RESUMEN

The aim of the current study was to improve temperature-monitoring precision using multiecho proton resonance frequency shift-based thermometry with view-sharing acceleration for MR-guided laser interstitial thermal therapy (MRgLITT) on a 0.5-T low-field MR system. Both precision and speed of the temperature measurement for clinical MRgLITT treatments suffer at low field, due to reduced image signal-to-noise ratio (SNR), decreased temperature-induced phase changes, and limited RF receiver channels. In this work, a bipolar multiecho gradient-recalled echo sequence with a temperature-to-noise ratio optimal weighted echo combination is applied to improve the temperature precision. A view-sharing-based approach is utilized to accelerate signal acquisitions while preserving image SNRs. The method was evaluated using ex vivo (pork and pig brain) LITT heating experiments and in vivo (human brain) nonheating experiments on a high-performance 0.5-T scanner. In terms of results, (1) after echo combination, multiecho thermometry (i.e., ~7.5-40.5 ms, 7 TEs) provides ~1.5-1.9 times higher temperature precision than the no echo combination case (i.e., TE7 = 40.5 ms) within the same readout bandwidth. Additionally, echo registration is necessary for the bipolar multiecho sequence; (2) for a threefold acceleration, the view-sharing approach with variable-density subsampling shows around 1.8 times lower temperature errors than the GRAPPA method. Particularly for view-sharing, variable-density subsampling performs better than Interleave subsampling; and (3) ex vivo heating and in vivo nonheating experiments demonstrated that the temperature accuracy was less than 0.5 ° C and that the temperature precision was less than 0.6 ° C using the proposed 0.5-T thermometry. It was concluded that view-sharing accelerated multiecho thermometry is a practical temperature measurement approach for MRgLITT at 0.5 T.


Asunto(s)
Termometría , Humanos , Animales , Porcinos , Temperatura , Fantasmas de Imagen , Termometría/métodos , Imagen por Resonancia Magnética/métodos , Rayos Láser
5.
Magn Reson Med ; 89(6): 2171-2185, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36656135

RESUMEN

PURPOSE: To develop an efficient MRI pulse sequence to simultaneously measure multiple parameters that have been shown to correlate with tissue nonviability following thermal therapies. METHODS: A 3D segmented EPI pulse sequence was used to simultaneously measure proton resonance frequency shift (PRFS) MR thermometry (MRT), T1 relaxation time, and shear wave velocity induced by focused ultrasound (FUS) push pulses. Experiments were performed in tissue mimicking gelatin phantoms and ex vivo bovine liver. Using a carefully designed FUS triggering scheme, a heating duty cycle of approximately 65% was achieved by interleaving FUS ablation pulses with FUS push pulses to induce shear waves in the tissue. RESULTS: In phantom studies, temperature increases measured with PRFS MRT and increases in T1 correlated with decreased shear wave velocity, consistent with material softening with increasing temperature. During ablation in ex vivo liver, temperature increase measured with PRFS MRT initially correlated with increasing T1 and decreasing shear wave velocity, and after tissue coagulation with decreasing T1 and increasing shear wave velocity. This is consistent with a previously described hysteresis in T1 versus PRFS curves and increased tissue stiffness with tissue coagulation. CONCLUSION: An efficient approach for simultaneous and dynamic measurements of PRSF, T1 , and shear wave velocity during treatment is presented. This approach holds promise for providing co-registered dynamic measures of multiple parameters, which correlates to tissue nonviability during and following thermal therapies, such as FUS.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Animales , Bovinos , Protones , Ultrasonografía , Temperatura , Imagen por Resonancia Magnética , Fantasmas de Imagen
6.
J Cancer Res Ther ; 18(5): 1256-1260, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36204870

RESUMEN

Aims: This study aimed to explore the accuracy of non-invasive temperature measurement based on proton resonance frequency (PRF) phase subtraction in microwave ablation (MWA). Methods and Material: The signal change of the agar phantom during the ablation process was monitored by the gradient echo sequence under 1.5 T superconducting magnetic resonance imagining (MRI), and the temperature change was converted by the phase subtraction method of the PRF, which was compared with the temperature measured using an optical fiber. Statistical Analysis Used: SPSS software version 22.0 was used for data processing, and the independent sample t-test was used for comparative analysis. P < 0.05 indicated statistical significance. Results: The maximum error between the MRI temperature measurement and the standard value was 3.61°C, whereas the minimum and average errors were 0.01°C and 1.19°C ± 0.78°C, respectively. Conclusions: The temperature measurement technology, which is based on the PRF phase method, has good accuracy in MRI-guided MWA.


Asunto(s)
Microondas , Protones , Agar , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Microondas/uso terapéutico , Fantasmas de Imagen , Temperatura
7.
Sensors (Basel) ; 22(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35684654

RESUMEN

The core body temperature tends to decrease under general anesthesia. Consequently, monitoring the core body temperature during procedures involving general anesthesia is essential to ensure patient safety. In veterinary medicine, rectal temperature is used as an indicator of the core body temperature, owing to the accuracy and convenience of this approach. Some previous studies involving craniotomy reported differences between the brain and core temperatures under general anesthesia. However, noninvasive imaging techniques are required to ascertain this because invasive brain temperature measurements can cause unintended temperature changes by inserting the temperature sensors into the brain or by performing the surgical operations. In this study, we employed in vivo magnetic resonance thermometry to observe the brain temperatures of patients under general anesthesia using the proton resonance frequency shift method. The rectal temperature was also recorded using a fiber optic thermometer during the MR thermometry to compare with the brain temperature changes. When the rectal temperature decreased by 1.4 ± 0.5 °C (mean ± standard deviation), the brain temperature (white matter) decreased by 4.8 ± 0.5 °C. Furthermore, a difference in the temperature reduction of the different types of brain tissue was observed; the reduction in the temperature of white matter exceeded that of gray matter mainly due to the distribution of blood vessels in the gray matter. We also analyzed and interpreted the core temperature changes with the body conditioning scores of subjects to see how the body weight affected the temperature changes.


Asunto(s)
Temperatura Corporal , Termometría , Anestesia General , Animales , Encéfalo/diagnóstico por imagen , Perros , Humanos , Espectroscopía de Resonancia Magnética , Termometría/métodos
8.
Jpn J Radiol ; 40(8): 768-780, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35430679

RESUMEN

PURPOSE: The present study aimed to evaluate magnetic resonance (MR) thermometry using proton resonance frequency shift (PRFS) during laser-induced thermotherapy (LITT), and to compare the results of using different sequences at a field strength of 7-Tesla to identify the optimal for use in ablation so that the surrounding healthy tissues may be protected from damaging in real time. MATERIALS AND METHODS: LITT was applied to agarose gel phantoms and ex-vivo porcine brains. We reconstructed both magnitude and phase images to perform MR thermometry based on PRFS methods. We tested four different sequences: a gradient-echo (GRE), a segmented gradient-echo echoplanar imaging (EPI-GRE), a fast-low angle shot (FLASH), and a true fast imaging with steady precession (TRUFI). Temperature was monitored and verified using a fiber-optic thermometry device. RESULTS: All sequences showed good linear correlations (R = 0.97-0.99) between the measured temperature and the calculated MR-thermometry measurements. The phantom/porcine brain experiments revealed the temperature precisions at 1.53/0.69 °C (GRE), 0.61/0.43 °C (EPI-GRE), 1.64/1.32 °C (FLASH), and 0.58/1.52 °C (TRUFI), respectively. Furthermore, we performed a Bland-Altman analysis and the temperature accuracies were found to be - 1.32/- 0.60 °C (GRE), 0.42/- 0.33 °C (EPI-GRE), - 1.28/- 0.98 °C (FLASH), and 0.14/0.46 °C (TRUFI) in the phantom/porcine brain experiments, respectively. CONCLUSIONS: Our experiments recommend that EPI-GRE sequence be the best of the all sequences for MR temperature imaging with PRFS in the LITT on 7 T magnetic resonance imaging (MRI) systems because of its relatively higher precision and accuracy.


Asunto(s)
Hipertermia Inducida , Protones , Animales , Encéfalo/diagnóstico por imagen , Hipertermia Inducida/métodos , Rayos Láser , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Porcinos , Temperatura
9.
Magn Reson Med ; 88(1): 120-132, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35313384

RESUMEN

PURPOSE: MR temperature monitoring of mild radiofrequency hyperthermia (RF-HT) of cancer exploits the linear resonance frequency shift of water with temperature. Motion-induced susceptibility distribution changes cause artifacts that we correct here using the total field inversion (TFI) approach. METHODS: The performance of TFI was compared to two background field removal (BFR) methods: Laplacian boundary value (LBV) and projection onto dipole fields (PDF). Data sets with spatial susceptibility change and B0 -drift were simulated, phantom heating experiments were performed, four volunteer data sets at thermoneutral conditions as well as data from one cervical cancer, two sarcoma, and one seroma patients undergoing mild RF-HT were corrected using the proposed methods. RESULTS: Simulations and phantom heating experiments revealed that using BFR or TFI preserves temperature-induced phase change, while removing susceptibility artifacts and B0 -drift. TFI resulted in the least cumulative error for all four volunteers. Temperature probe information from four patient data sets were best depicted by TFI-corrected data in terms of accuracy and precision. TFI also performed best in case of the sarcoma treatment without temperature probe. CONCLUSION: TFI outperforms previously suggested BFR methods in terms of accuracy and robustness. While PDF consistently overestimates susceptibility contribution, and LBV removes valuable pixel information, TFI is more robust and leads to more accurate temperature estimations.


Asunto(s)
Hipertermia Inducida , Sarcoma , Termometría , Artefactos , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Termometría/métodos
10.
J Magn Reson Imaging ; 55(2): 389-403, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217099

RESUMEN

Magnetic resonance imaging (MRI) has become a popular modality in guiding minimally invasive thermal therapies, due to its advanced, nonionizing, imaging capabilities and its ability to record changes in temperature. A variety of MR thermometry techniques have been developed over the years, and proton resonance frequency (PRF) shift thermometry is the current clinical gold standard to treat a variety of cancers. It is used extensively to guide hyperthermic thermal ablation techniques such as high-intensity focused ultrasound (HIFU) and laser-induced thermal therapy (LITT). Essential attributes of PRF shift thermometry include excellent linearity with temperature, good sensitivity, and independence from tissue type. This noninvasive temperature mapping method gives accurate quantitative measures of the temperature evolution inside biological tissues. In this review, the current status and new developments in the fields of MR-guided HIFU and LITT are presented with an emphasis on breast, prostate, bone, uterine, and brain treatments. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Termometría , Humanos , Imagen por Resonancia Magnética , Masculino , Próstata , Protones
11.
J Imaging ; 7(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34460513

RESUMEN

Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds are currently emerging in the clinical practice as a noninvasive technology for therapy. Indeed, the sound waves can be used to increase the temperature inside the target solid tumors, leading to apoptosis or necrosis of neoplastic tissues. The Magnetic resonance-guided focused ultrasound surgery (MRgFUS) technology represents a valid application of this ultrasound property, mainly used in oncology and neurology. In this paper; patient safety during MRgFUS treatments was investigated by a series of experiments in a tissue-mimicking phantom and performing ex vivo skin samples, to promptly identify unwanted temperature rises. The acquired MR images, used to evaluate the temperature in the treated areas, were analyzed to compare classical proton resonance frequency (PRF) shift techniques and referenceless thermometry methods to accurately assess the temperature variations. We exploited radial basis function (RBF) neural networks for referenceless thermometry and compared the results against interferometric optical fiber measurements. The experimental measurements were obtained using a set of interferometric optical fibers aimed at quantifying temperature variations directly in the sonication areas. The temperature increases during the treatment were not accurately detected by MRI-based referenceless thermometry methods, and more sensitive measurement systems, such as optical fibers, would be required. In-depth studies about these aspects are needed to monitor temperature and improve safety during MRgFUS treatments.

12.
Magn Reson Med ; 85(3): 1282-1293, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32936510

RESUMEN

PURPOSE: A MR thermometry (MRT) method with field monitoring is proposed to improve the measurement of small temperature variations induced in brain MRI exams. METHODS: MR thermometry experiments were performed at 7 Tesla with concurrent field monitoring and RF heating. Images were reconstructed with nominal k-space trajectories and with first-order spherical harmonics correction. Experiments were performed in vitro with deliberate field disturbances and on an anesthetized macaque in 2 different specific absorption rate regimes, that is, at 50% and 100% of the maximal specific absorption rate level allowed in the International Electrotechnical Commission normal mode of operation. Repeatability was assessed by running a second separate session on the same animal. RESULTS: Inclusion of magnetic field fluctuations in the reconstruction improved temperature measurement accuracy in vitro down to 0.02°C. Measurement precision in vivo was on the order of 0.15°C in areas little affected by motion. In the same region, temperature increase reached 0.5 to 0.8°C after 20 min of heating at 100% specific absorption rates and followed a rough factor of 2 with the 50% specific absorption rate scans. A horizontal temperature plateau, as predicted by Pennes bioheat model with thermal constants from the literature and constant blood temperature assumption, was not observed. CONCLUSION: Inclusion of field fluctuations in image reconstruction was beneficial for the measurement of small temperature rises encountered in standard brain exams. More work is needed to correct for motion-induced field disturbances to extract reliable temperature maps.


Asunto(s)
Calefacción , Termometría , Animales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Fantasmas de Imagen , Temperatura
13.
Phys Med ; 71: 100-107, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32114323

RESUMEN

MRI-guided microwave ablation (MWA) is a minimally invasive treatment for localized cancer. MR thermometry has been shown to be able to provide vital information for monitoring the procedure in real-time. However, MRI during active MWA can suffer from image quality degradation due to intermittent electromagnetic interference (EMI). A novel approach to correct for EMI-contaminated images is presented here to improve MR thermometry during clinical hepatic MWA. The method was applied to MR-thermometry images acquired during four MR-guided hepatic MWA treatments using a commercially available MRI-configured microwave generator system. During the treatments MR thermometry data acquisition was synchronized to respiratory cycle to minimize the impact of motion. EMI was detected and corrected using uncontaminated k-space data from nearby frames in k-space. Substantially improved temperature and thermal damage maps have been obtained and the treatment zone can be better visualized. Our ex vivo tissue sample study shows the correction introduced minimal errors to the temperature maps and thermal damage maps.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Microondas , Terapia por Radiofrecuencia , Termometría , Algoritmos , Artefactos , Radiación Electromagnética , Análisis de Fourier , Humanos , Reproducibilidad de los Resultados , Relación Señal-Ruido
14.
Neuroimage ; 204: 116236, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31597085

RESUMEN

BACKGROUND: Transcranial focus ultrasound applications applied under MRI-guidance benefit from unrivaled monitoring capabilities, allowing the recording of real-time anatomical information and biomarkers like the temperature rise and/or displacement induced by the acoustic radiation force. Having both of these measurements could allow for better targeting of brain structures, with improved therapy monitoring and safety. METHOD: We investigated the use of a novel MRI-pulse sequence described previously in Bour et al., (2017) to quantify both the displacement and temperature changes under various ultrasound sonication conditions and in different regions of the brain. The method was evaluated in vivo in a non-human primate under anesthesia using a single-element transducer (f = 850 kHz) in a setting that could mimic clinical applications. Acquisition was performed at 3 T on a clinical imaging system using a modified single-shot gradient echo EPI sequence integrating a bipolar motion-sensitive encoding gradient. Four slices were acquired sequentially perpendicularly or axially to the direction of the ultrasound beam with a 1-Hz update frequency and an isotropic spatial resolution of 2-mm. A total of twenty-four acquisitions were performed in three different sets of experiments. Measurement uncertainty of the sequence was investigated under different acoustic power deposition and in different regions of the brain. Acoustic simulation and thermal modeling were performed and compared to experimental data. RESULTS: The sequence simultaneously provides relevant information about the focal spot location and visualization of heating of brain structures: 1) The sequence localized the acoustic focus both along as well as perpendicular to the ultrasound direction. Tissue displacements ranged from 1 to 2 µm. 2) Thermal rise was only observed at the vicinity of the skull. Temperature increase ranged between 1 and 2 °C and was observed delayed relative the sonication due to thermal diffusion. 3) The fast frame rate imaging was able to highlight magnetic susceptibility artifacts related to breathing, for the most caudal slices. We demonstrated that respiratory triggering successfully restored the sensitivity of the method (from 0.7 µm to 0.2 µm). 4) These results were corroborated by acoustic simulations. CONCLUSIONS: The current rapid, multi-slice acquisition and real-time implementation of temperature and displacement visualization may be useful in clinical practices. It may help defining operational safety margins, improving therapy precision and efficacy. Simulations were in good agreement with experimental data and may thus be used prior treatment for procedure planning.


Asunto(s)
Temperatura Corporal/fisiología , Imagen Eco-Planar/métodos , Neuroimagen/métodos , Termometría/métodos , Terapia por Ultrasonido , Animales , Encéfalo , Simulación por Computador , Macaca mulatta
15.
Phys Med ; 66: 113-118, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31593874

RESUMEN

OBJECTIVE: Accurate estimation of SAR is critical to safeguarding vulnerable patients who require an MRI procedure. The increased static field strength and RF duty cycle capabilities in modern MRI scanners mean that systems can easily exceed safe SAR levels for patients. Advisory protocols routinely used to establish quality assurance protocols are not required to advise on the testing of MRI SAR levels and is not routinely measured in annual medical physics quality assurance checks. This study aims to develop a head phantom and protocol that can independently verify global SAR for MRI clinical scanners. METHODS: A four-channel birdcage head coil was used for RF transmission and signal reception. Proton resonance shift thermometry was used to estimate SAR. The SAR estimates were verified by comparing results against two other independent measures, then applied to a further four scanners at field strengths of 1.5 T and 3 T. RESULTS: Scanner output SAR values ranged from 0.42 to 1.52 W/kg. Percentage SAR differences between independently estimated values and those calculated by the scanners differed by 0-2.3%. CONCLUSION: We have developed a quality assurance protocol to independently verify the SAR output of MRI scanners.


Asunto(s)
Cabeza , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Dosis de Radiación , Humanos
16.
NMR Biomed ; 32(11): e4160, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31397942

RESUMEN

BACKGROUND: Magnetic resonance (MR) thermometry allows visualization of lesion formation in real-time during cardiac radiofrequency (RF) ablation. The present study was performed to evaluate the precision of MR thermometry without RF heating in patients exhibiting cardiac arrhythmia in a clinical setting. The evaluation relied on quantification of changes in temperature measurements caused by noise and physiological motion. METHODS: Fourteen patients referred for cardiovascular magnetic resonance imaging underwent an extra sequence to test the temperature mapping stability during free-breathing acquisition. Phase images were acquired using a multi-slice, cardiac-triggered, single-shot echo planar imaging sequence. Temperature maps were calculated and displayed in real-time while the electrocardiogram (ECG) was recorded. The precision of temperature measurement was assessed by measuring the temporal standard deviation and temporal mean of consecutive temperature maps over a period of three minutes. The cardiac cycle was analyzed from ECG recordings to quantify the impact of arrhythmia events on the precision of temperature measurement. Finally, two retrospective strategies were tested to remove acquisition dynamics related either to arrhythmia events or sudden breathing motion. RESULTS: ECG synchronization allowed categorization of inter-beat intervals (RR) into distinct beat morphologies. Five patients were in stable sinus rhythm, while nine patients showed irregular RR intervals due to ectopic beats. An average temporal standard deviation of temperature of 1.6°C was observed in patients under sinus rhythm with a frame rate corresponding to the heart rate of the patient. The temporal standard deviation rose to 2.5°C in patients with arrhythmia. The retrospective rejection strategies increased the temperature precision measurement while maintaining a sufficient frame rate. CONCLUSIONS: Our results indicated that real-time cardiac MR thermometry shows good precision in patients under clinical conditions, even in the presence of arrhythmia. By providing real-time visualization of temperature distribution within the myocardium during RF delivery, MR thermometry could prevent insufficient or excessive heating and thus improve safety and efficacy.


Asunto(s)
Arritmias Cardíacas/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética , Temperatura , Adolescente , Adulto , Anciano , Automatización , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Respiración , Nodo Sinoatrial/diagnóstico por imagen , Adulto Joven
17.
Prog Nucl Magn Reson Spectrosc ; 110: 34-61, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30803693

RESUMEN

Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.


Asunto(s)
Temperatura Corporal , Imagen por Resonancia Magnética/métodos , Monitoreo Fisiológico/métodos , Termometría/métodos , Grasa Abdominal/diagnóstico por imagen , Tejido Adiposo/diagnóstico por imagen , Mama/diagnóstico por imagen , Medios de Contraste , Humanos , Fantasmas de Imagen , Fenómenos Físicos , Protones
18.
Lasers Surg Med ; 51(3): 286-300, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30645017

RESUMEN

OBJECTIVES: To develop, test and evaluate improved 2D and 3D protocols for proton resonance frequency shift magnetic resonance temperature imaging (MRTI) of laser interstitial thermal therapy (LITT). The objective was to develop improved MRTI protocols in terms of temperature measurement precision and volume coverage compared to the 2D MRTI protocol currently used with a commercially available LITT system. METHODS: Four different 2D protocols and four different 3D protocols were investigated. The 2D protocols used multi-echo readouts to prolong the total MR sampling time and hence the MRTI precision, without prolonging the total acquisition time. The 3D protocols provided volumetric thermometry by acquiring a slab of 12 contiguous slices in the same acquisition time as the 2D protocols. The study only considered readily available pulse sequences (Cartesian 2D and 3D gradient recalled echo and echo planar imaging [EPI]) and methods (partial Fourier and parallel imaging) to ensure wide availability and rapid clinical implementation across vendors and field strengths. In vivo volunteer studies were performed to investigate and compare MRTI precision and image quality. Phantom experiments with LITT heating were performed to investigate and compare MRTI precision and accuracy. Different coil setups were used in the in vivo studies to assess precision differences between using local (such as flex and head coils) and non-local (i.e., body coil) receive coils. Studies were performed at both 1.5 T and 3 T. RESULTS: The improved 2D protocols provide up to a factor of two improvement in the MRTI precision in the same acquisition time, compared to the currently used clinical protocol. The 3D echo planar imaging protocols provide comparable precision as the currently used 2D clinical protocol, but over a substantially larger field of view, without increasing the acquisition time. As expected, local receive coils perform substantially better than the body coil, and 3 T provides better MRTI accuracy and precision than 1.5 T. 3D data can be zero-filled interpolated in all three dimensions (as opposed to just two dimensions for 2D data), reducing partial volume effects and measuring higher maximum temperature rises. CONCLUSIONS: With the presented protocols substantially improved MRTI precision (for 2D imaging) or greatly improved field of view coverage (for 3D imaging) can be achieved in the same acquisition time as the currently used protocol. Only widely available pulse sequences and acquisition methods were investigated, which should ensure quick translation to the clinic. Lasers Surg. Med. 51:286-300, 2019. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Hipertermia Inducida , Imagenología Tridimensional , Imagen por Resonancia Magnética , Termometría/métodos , Protocolos Clínicos , Imagen Eco-Planar , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados
19.
Magn Reson Med ; 81(4): 2385-2398, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394582

RESUMEN

PURPOSE: To perform multi-echo water/fat separated proton resonance frequency (PRF)-shift temperature mapping. METHODS: State-of-the-art, iterative multi-echo water/fat separation algorithms produce high-quality water and fat images in the absence of heating but are not suitable for real-time imaging due to their long compute times and potential errors in heated regions. Existing fat-referenced PRF-shift temperature reconstruction methods partially address these limitations but do not address motion or large time-varying and spatially inhomogeneous B0 shifts. We describe a model-based temperature reconstruction method that overcomes these limitations by fitting a library of separated water and fat images measured before heating directly to multi-echo data measured during heating, while accounting for the PRF shift with temperature. RESULTS: Simulations in a mixed water/fat phantom with focal heating showed that the proposed algorithm reconstructed more accurate temperature maps in mixed tissues compared to a fat-referenced thermometry method. In a porcine phantom experiment with focused ultrasound heating at 1.5 Tesla, temperature maps were accurate to within 1∘ C of fiber optic probe temperature measurements and were calculated in 0.47 s per time point. Free-breathing breast and liver imaging experiments demonstrated motion and off-resonance compensation. The algorithm can also accurately reconstruct water/fat separated temperature maps from a single echo during heating. CONCLUSIONS: The proposed model-based water/fat separated algorithm produces accurate PRF-shift temperature maps in mixed water and fat tissues in the presence of spatiotemporally varying off-resonance and motion.


Asunto(s)
Tejido Adiposo/química , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Termografía/métodos , Agua/química , Algoritmos , Animales , Mama/diagnóstico por imagen , Simulación por Computador , Femenino , Voluntarios Sanos , Calefacción , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Estadísticos , Movimiento (Física) , Reproducibilidad de los Resultados , Porcinos , Temperatura , Ultrasonografía
20.
MAGMA ; 32(3): 369-380, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30515641

RESUMEN

OBJECTIVE: Mild hyperthermia (HT) treatments are generally monitored by phase-referenced proton resonance frequency shift calculations. A novel phase and thus temperature-sensitive fast spin echo (TFSE) sequence is introduced and compared to the double echo gradient echo (DEGRE) sequence. THEORY AND METHODS: For a proton resonance frequency shift (PRFS)-sensitive TFSE sequence, a phase cycling method is applied to separate even from odd echoes. This method compensates for conductivity change-induced bias in temperature mapping as does the DEGRE sequence. Both sequences were alternately applied during a phantom heating experiment using the clinical setup for deep radio frequency HT (RF-HT). The B0 drift-corrected temperature values in a region of interest around temperature probes are compared to the temperature probe data and further evaluated in Bland-Altman plots. The stability of both methods was also tested within the thighs of three volunteers at a constant temperature using the subcutaneous fat layer for B0-drift correction. RESULTS: During the phantom heating experiment, on average TFSE temperature maps achieved double temperature-to-noise ratio (TNR) efficiency in comparison with DEGRE temperature maps. In-vivo images of the thighs exhibit stable temperature readings of ± 1 °C over 25 min of scanning in three volunteers for both methods. On average, the TNR efficiency improved by around 25% for in vivo data. CONCLUSION: A novel TFSE method has been adapted to monitor temperature during mild HT.


Asunto(s)
Hipertermia Inducida/métodos , Pelvis/diagnóstico por imagen , Protones , Ondas de Radio , Termografía/métodos , Conductividad Eléctrica , Diseño de Equipo , Calor , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA