Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37505029

RESUMEN

SrZrO3-based perovskites are promising proton-conducting membranes for use in fuel and electrolysis cells, sensors, hydrogen separators, etc., because they combine good proton conductivity with excellent chemical stability. In the present research, the effect of Lu-doping on microstructure, phase composition, and electrical conductivity of SrZr1-xLuxO3-δ (x = 0-0.10) was investigated via X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and impedance spectroscopy. Dense ceramic samples were obtained by the solution combustion synthesis and possessed an orthorhombic perovskite-type structure. The solubility limit of Lu was revealed to lie between x = 0.03 and 0.05. The conductivity of SrZr1-xLuxO3-δ increases strongly with the addition of Lu at x < 0.05 and just slightly changes at x > 0.05. The rise of the water vapor partial pressure results in an increase in the conductivity of SrZr1-xLuxO3-δ ceramics, which confirms their hydration ability and significant contribution of protonic defects to the charge transfer. The highest conductivity was achieved at x = 0.10 (10 mS cm-1 at 700 °C, wet air, pH2O = 0.61 kPa). The conductivity behavior was discussed in terms of the defect formation model, taking into account the improvement in ceramic sintering at high lutetium concentrations.

2.
Membranes (Basel) ; 13(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37367756

RESUMEN

The development of phosphorylated polybenzimidazoles (PBI) for high-temperature polymer-electrolyte membrane (HT-PEM) fuel cells is a challenge and can lead to a significant increase in the efficiency and long-term operability of fuel cells of this type. In this work, high molecular weight film-forming pre-polymers based on N1,N5-bis(3-methoxyphenyl)-1,2,4,5-benzenetetramine and [1,1'-biphenyl]-4,4'-dicarbonyl dichloride were obtained by polyamidation at room temperature for the first time. During thermal cyclization at 330-370 °C, such polyamides form N-methoxyphenyl substituted polybenzimidazoles for use as a proton-conducting membrane after doping by phosphoric acid for H2/air HT-PEM fuel cells. During operation in a membrane electrode assembly at 160-180 °C, PBI self-phosphorylation occurs due to the substitution of methoxy-groups. As a result, proton conductivity increases sharply, reaching 100 mS/cm. At the same time, the current-voltage characteristics of the fuel cell significantly exceed the power indicators of the commercial BASF Celtec® P1000 MEA. The achieved peak power is 680 mW/cm2 at 180 °C. The developed approach to the creation of effective self-phosphorylating PBI membranes can significantly reduce their cost and ensure the environmental friendliness of their production.

3.
Membranes (Basel) ; 13(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37367778

RESUMEN

The quest for a cost-effective, chemically-inert, robust and proton conducting membrane for flow batteries is at its paramount. Perfluorinated membranes suffer severe electrolyte diffusion, whereas conductivity and dimensional stability in engineered thermoplastics depend on the degree of functionalization. Herein, we report surface-modified thermally crosslinked polyvinyl alcohol-silica (PVA-SiO2) membranes for the vanadium redox flow battery (VRFB). Hygroscopic, proton-storing metal oxides such as SiO2, ZrO2 and SnO2 were coated on the membranes via the acid-catalyzed sol-gel strategy. The membranes of PVA-SiO2-Si, PVA-SiO2-Zr and PVA-SiO2-Sn demonstrated excellent oxidative stability in 2 M H2SO4 containing 1.5 M VO2+ ions. The metal oxide layer had good influence on conductivity and zeta potential values. The observed trend for conductivity and zeta potential values was PVA-SiO2-Sn > PVA-SiO2-Si > PVA-SiO2-Zr. In VRFB, the membranes showcased higher Coulombic efficiency than Nafion-117 and stable energy efficiencies over 200 cycles at the 100 mA cm-2 current density. The order of average capacity decay per cycle was PVA-SiO2-Zr < PVA-SiO2-Sn < PVA-SiO2-Si < Nafion-117. PVA-SiO2-Sn had the highest power density of 260 mW cm-2, while the self-discharge for PVA-SiO2-Zr was ~3 times higher than Nafion-117. VRFB performance reflects the potential of the facile surface modification technique to design advanced membranes for energy device applications.

4.
Membranes (Basel) ; 13(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36676912

RESUMEN

A composite proton conducting membrane (PCM) was prepared by radiation-induced grafting (RIG) of binary mixtures of 4-vinyl pyridine (4-VP) and 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetrafluoroethylene) (ETFE) film followed by phosphoric acid (PA) doping. The grafting parameters such as absorbed dose, temperature, monomer concentration, time, and monomer ratio were varied to control the degree of grafting (DG%). The effect of the reactivity ratio of 4-VP and 1-VIm on the composition and degree of monomer unit alternation in the formed graft copolymer was investigated. The changes in the chemical and physical properties endowed by grafting and subsequent PA acid doping were monitored using analytical instruments. The mechanical properties and proton conductivity of the obtained membrane were evaluated and its performance was tested in H2/O2 fuel cell at 120 °C under anhydrous and partially wet conditions. The acid doping level was affected by the treatment parameters and enhanced by increasing DG. The proton conductivity was boosted by incorporating the combination of pyridine and imidazole rings originating from the formed basic graft copolymer of 4-VP/1-VIm dominated by 4-VP units in the structure. The proton conductivity showed a strong dependence on the temperature. The membrane demonstrated superior properties compared to its counterpart obtained by grafting 4-VP alone. The membrane also showed a strong potential for application in proton exchange membrane fuel cells (PEMFC) operating at 120 °C.

5.
ACS Appl Mater Interfaces ; 13(11): 13604-13612, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33719388

RESUMEN

Synthesis of solid-state proton-conducting membranes with low activation energy and high proton conductivity under anhydrous conditions is a great challenge. Here, we show a simple and convenient way to prepare covalent triazine framework membranes (CTF-Mx) with acid in situ doping for anhydrous proton conduction in a wide temperature range from subzero to elevated temperature (160 °C). The low proton dissociation energy and continuous hydrogen bond network in CTF-Mx make the membrane achieve high proton conductivity from 1.21×10-3 S cm-1 (-40 °C) to 2.08×10-2 S cm-1 (160 °C) under anhydrous conditions. Molecular dynamics and proton relaxation time analyses reveal proton hopping at low activation energies with greatly enhanced mobility in the CTF membranes.

6.
Bioelectrochemistry ; 129: 259-269, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31247532

RESUMEN

Proton-conducting porous ceramic membranes were synthesized via a polymer-derived ceramic route and probed in a microbial fuel cell (MFC). Their chemical compositions were altered by adding carbon allotropes including graphene oxide (GO) and multiwall carbon nanotubes into a polysiloxane matrix as filler materials. Physical characteristics of the synthesized membranes such as porosity, hydrophilicity, mechanical stability, ion exchange capacity, and oxygen mass transfer coefficient were determined to investigate the best membrane material for further testing in MFCs. The ion exchange capacity of the membrane increased drastically after adding 0.5 wt% of GO at an increment of 9 fold with respect to that of the non-modified ceramic membrane, while the oxygen mass transfer coefficient of the membrane decreased by 52.6%. The MFC operated with this membrane exhibited a maximum power density of 7.23 W m-3 with a coulombic efficiency of 28.8%, which was significantly higher than the value obtained using polymeric Nafion membrane. Hence, out of all membranes tested in this study the GO-modified polysiloxane based ceramic membranes are found to have a potential to replace Nafion membranes in pilot scale MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Cerámica/química , Grafito/química , Membranas Artificiales , Nanotubos de Carbono/química , Siloxanos/química , Fuentes de Energía Bioeléctrica/microbiología , Electricidad , Modelos Moleculares , Porosidad
7.
Materials (Basel) ; 9(3)2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-28773268

RESUMEN

The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 µm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 µm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA