Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149382

RESUMEN

Iron is critical for neuronal activity and metabolism, and iron dysregulation alters these functions in age-related neurodegenerative disorders, such as Alzheimer's disease (AD). AD is a chronic neurodegenerative disease characterized by progressive neuronal dysfunction, memory loss and decreased cognitive function. AD patients exhibit elevated iron levels in the brain compared to age-matched non-AD individuals. However, the degree to which iron overload contributes to AD pathogenesis is unclear. Here, we evaluated the involvement of ferroptosis, an iron-dependent cell death process, in mediating AD-like pathologies in C. elegans. Results showed that iron accumulation occurred prior to the loss of neuronal function as worms age. In addition, energetic imbalance was an early event in iron-induced loss of neuronal function. Furthermore, the loss of neuronal function was, in part, due to increased mitochondrial reactive oxygen species mediated oxidative damage, ultimately resulting in ferroptotic cell death. The mitochondrial redox environment and ferroptosis were modulated by pharmacologic processes that exacerbate or abolish iron accumulation both in wild-type worms and worms with increased levels of neuronal amyloid beta (Aß). However, neuronal Aß worms were more sensitive to ferroptosis-mediated neuronal loss, and this increased toxicity was ameliorated by limiting the uptake of ferrous iron through knockout of divalent metal transporter 1 (DMT1). In addition, DMT1 knockout completely suppressed phenotypic measures of Aß toxicity with age. Overall, our findings suggest that iron-induced ferroptosis alters the mitochondrial redox environment to drive oxidative damage when neuronal Aß is overexpressed. DMT1 knockout abolishes neuronal Aß-associated pathologies by reducing neuronal iron uptake.

2.
Antioxidants (Basel) ; 13(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39199177

RESUMEN

Phytoene is a colourless carotenoid widely available from dietary sources and a precursor for the synthesis of other carotenoids. Although present at high concentrations across different tissues, phytoene is largely viewed as not having physiological activity. Here, we utilize the model organism C. elegans to show that phytoene is bioactive and has anti-ageing properties. Supplementation with phytoene protects against oxidative damage and amyloid-ß42 proteotoxicity (a major pathology of Alzheimer's disease), and extends lifespan. We also examine extracts from two microalgae, Chlorella sorokiniana and Dunaliella bardawil. We show that the extracts contain high levels of phytoene, and find that these phytoene-rich extracts have protective effects similar to pure phytoene. Our findings show that phytoene is a bioactive molecule with positive effects on ageing and longevity. Our work also suggests that phytoene-rich microalgae extracts can utilized to produce foods or supplements that promote healthy ageing and prevent the development of chronic age-related diseases.

3.
Cell Rep ; 43(8): 114473, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39024102

RESUMEN

Mitochondria require the constant import of nuclear-encoded proteins for proper functioning. Impaired protein import not only depletes mitochondria of essential factors but also leads to toxic accumulation of un-imported proteins outside the organelle. Here, we investigate the consequences of impaired mitochondrial protein import in human cells. We demonstrate that un-imported proteins can clog the mitochondrial translocase of the outer membrane (TOM). ATAD1, a mitochondrial ATPase, removes clogged proteins from TOM to clear the entry gate into the mitochondria. ATAD1 interacts with both TOM and stalled proteins, and its knockout results in extensive accumulation of mitochondrial precursors as well as decreased protein import. Increased ATAD1 expression contributes to improved fitness of cells with inefficient mitochondrial protein import. Overall, we demonstrate the importance of the ATAD1 quality control pathway in surveilling protein import and its contribution to cellular health.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Mitocondrias , Proteínas Mitocondriales , Transporte de Proteínas , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Mitocondrias/metabolismo , Células HeLa , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Adenosina Trifosfatasas/metabolismo , Células HEK293 , Membranas Mitocondriales/metabolismo
4.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38989890

RESUMEN

Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.


Asunto(s)
Drosophila melanogaster , Prolina , Biosíntesis de Proteínas , Serina , Transcriptoma , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Masculino , Femenino , Prolina/metabolismo , Serina/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , Regulación de la Expresión Génica
5.
Biomolecules ; 14(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786006

RESUMEN

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


Asunto(s)
Ácido 3-Hidroxiantranílico , Péptidos beta-Amiloides , Caenorhabditis elegans , Parálisis , Péptidos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animales , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Péptidos/farmacología , Ácido 3-Hidroxiantranílico/metabolismo , Parálisis/inducido químicamente , Parálisis/metabolismo , Parálisis/genética , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Dioxigenasas/metabolismo , Dioxigenasas/genética
6.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766246

RESUMEN

Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.

7.
J Hazard Mater ; 471: 134270, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640676

RESUMEN

Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to ß subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.


Asunto(s)
Acetamidas , Retículo Endoplásmico , Herbicidas , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Respuesta de Proteína Desplegada , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Acetamidas/farmacología , Acetamidas/toxicidad , Herbicidas/toxicidad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Citosol/metabolismo , Citosol/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estrés Proteotóxico
8.
ACS Chem Neurosci ; 15(10): 1967-1989, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657106

RESUMEN

Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.


Asunto(s)
Ciclofilinas , Chaperonas Moleculares , Proteínas de Complejo Poro Nuclear , Isomerasa de Peptidilprolil , Proteostasis , Animales , Chaperonas Moleculares/metabolismo , Ratones , Ciclofilinas/metabolismo , Proteostasis/fisiología , Isomerasa de Peptidilprolil/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Cristalinas/metabolismo
9.
Aging Cell ; 23(2): e14046, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37990605

RESUMEN

A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-ß aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Fragilidad , Resiliencia Psicológica , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Longevidad/genética , Reprogramación Metabólica , Estrés Oxidativo/genética , Paraquat/toxicidad , Péptidos/metabolismo
10.
Biophys Chem ; 304: 107130, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952497

RESUMEN

Impeding or reducing human amylin aggregation and/or its toxicity can be key to preventing pancreatic islet amyloidosis and ß-cell loss in patients with Type 2 Diabetes Mellitus (T2DM). Here, Punica granatum (pomegranate) peel, Sideritis raeseri (ironwort) and Aronia melanocarpa (chokeberry) leaf extracts, were tested for their novel anti-aggregative and antitoxic properties in human amylin (hIAPP) treated rat pancreatic insulinoma (INS) cells. The protein aggregation (Th-T) assay revealed an inhibitory trend of all three plant extracts against amylin aggregates. In agreement with this finding, pomegranate peel and ironwort extracts effectively prevented the transition of hIAPP from disordered, random coil structures into aggregation prone ß-sheet enriched molecular assemblies, revealed by CD spectroscopy. Consistent with their anti-aggregative action, all three extracts prevented, to various degrees, reactive oxygen species (ROS) accumulation, mitochondrial stress, and, ultimately, apoptosis of INS cells. Collectively, the results from this study demonstrate effectiveness of natural products to halt hIAPP aggregation, redox stress, and toxicity, which could be exploited as novel therapeutics against amylin-derived islet amyloidosis and ß-cell stress in T2DM.


Asunto(s)
Amiloidosis , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Granada (Fruta) , Sideritis , Humanos , Ratas , Animales , Polipéptido Amiloide de los Islotes Pancreáticos/química , Diabetes Mellitus Tipo 2/metabolismo , Sideritis/metabolismo , Granada (Fruta)/metabolismo , Amiloidosis/metabolismo , Extractos Vegetales/farmacología
11.
Front Microbiol ; 14: 1281058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075883

RESUMEN

Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.

12.
FASEB Bioadv ; 5(11): 484-505, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37936921

RESUMEN

ß2-microglobulin (ß2-m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild-type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N ß2-m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans (C. elegans) strain expressing human WT ß2-m at high concentrations, mimicking the condition that underlies dialysis-related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N ß2-m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with ß2-m levels rather than with the presence of mutations, being more pronounced in WT ß2-m worms. ß2-m expression also has a deep impact on the nematodes' proteomic and metabolic profiles. Most significantly affected processes include protein degradation and stress response, amino acids metabolism, and bioenergetics. Molecular alterations are more pronounced in worms expressing WT ß2-m at high concentration compared to D76N ß2-m worms. Altogether, these data show that ß2-m is a proteotoxic protein in vivo also in its wild-type form, and that concentration plays a key role in modulating pathogenicity. Our transgenic nematodes recapitulate the distinctive features subtending DRA compared to hereditary ß2-m amyloidosis (high levels of non-mutated ß2-m vs. normal levels of variant ß2-m) and provide important clues on the molecular bases of these human diseases.

13.
Biochem Soc Trans ; 51(6): 2117-2126, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37987513

RESUMEN

Mitochondria are vital to the functions of eukaryotic cells. Most mitochondrial proteins are transported into the organelle following their synthesis by cytoplasmic ribosomes. However, precise protein targeting is complex because the two diverse lipid membranes encase mitochondria. Efficient protein translocation across membranes and accurate sorting to specific sub-compartments require the cooperation of multiple factors. Any failure in mitochondrial protein import can disrupt organelle fitness. Proteins intended for mitochondria make up a significant portion of all proteins produced in the cytosol. Therefore, import defects causing their mislocalization can significantly stress cellular protein homeostasis. Recognition of this phenomenon has increased interest in molecular mechanisms that respond to import-related stress and restore proteostasis, which is the focus of this review. Significantly, disruptions in protein homeostasis link strongly to the pathology of several degenerative disorders highly relevant in ageing societies. A comprehensive understanding of protein import quality control will allow harnessing this machinery in therapeutic approaches.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Mitocondrias/metabolismo , Transporte de Proteínas/fisiología , Proteínas Mitocondriales/metabolismo , Transporte Biológico , Citosol/metabolismo
14.
Pharm Pat Anal ; 12(5): 213-218, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37982638

RESUMEN

Aging and proteotoxicity go hand in hand. Inhibiting proteotoxicity has been proposed to extend lifespan. This invention describes a new strategy to limit proteotoxicity and to extend the lifespan. Loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase, elevates the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. The present invention provides a group of molecules for use in the prevention of aging-associated proteotoxicity caused by protein aggregation diseases and/or to increase the lifespan of a eukaryotic organism. These molecules are either steroid sulfatase inhibitors or sulfated C19 steroids, both of which reproduce the phenotype of sul-2 mutants. One particular representative example is STX-64. Potential applications of the claims have been demonstrated in animal models of Parkinson's disease, Huntington's disease and Alzheimer's disease.


Asunto(s)
Esteril-Sulfatasa , Sulfatos , Animales , Esteril-Sulfatasa/metabolismo , Sulfatos/metabolismo , Agregado de Proteínas , Envejecimiento/metabolismo , Esteroides/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
15.
Front Mol Biosci ; 10: 1290118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38016061

RESUMEN

The protein homeostasis (proteostasis) network is a nexus of molecular mechanisms that act in concert to maintain the integrity of the proteome and ensure proper cellular and organismal functionality. Early in life the proteostasis network efficiently preserves the functionality of the proteome, however, as the organism ages, or due to mutations or environmental insults, subsets of inherently unstable proteins misfold and form insoluble aggregates that accrue within the cell. These aberrant protein aggregates jeopardize cellular viability and, in some cases, underlie the development of devastating illnesses. Hence, the accumulation of protein aggregates activates different nodes of the proteostasis network that refold aberrantly folded polypeptides, or direct them for degradation. The proteostasis network apparently functions within the cell, however, a myriad of studies indicate that this nexus of mechanisms is regulated at the organismal level by signaling pathways. It was also discovered that the proteostasis network differentially responds to dissimilar proteotoxic insults by tailoring its response according to the specific challenge that cells encounter. In this mini-review, we delineate the proteostasis-regulating neuronal mechanisms, describe the indications that the proteostasis network differentially responds to distinct proteotoxic challenges, and highlight possible future clinical prospects of these insights.

16.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808805

RESUMEN

In mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Here we show that in budding yeast, Heat Shock Response (HSR) genes under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10 min and dissipate within 1 h, Hsf1 condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes and RNA expression are detectable only later in the response and peak much later (>1 h). This contrasts with the coordinate response of HSR genes to thermal stress where Pol II occupancy, transcription, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 h). Collectively, our data suggest that different stimuli drive distinct transcription, topologic, and phase-separation phenomena dependent on the same transcription factor and that transcription factor-containing condensates represent only part of the ensemble required for gene activation.

17.
Cell Mol Life Sci ; 80(11): 342, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904059

RESUMEN

Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.


Asunto(s)
Arsénico , Metaloides , Enfermedades Neurodegenerativas , Humanos , Arsénico/toxicidad , Antimonio/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Daño del ADN
18.
J Cell Physiol ; 238(10): 2481-2498, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37750538

RESUMEN

The mechanism of aging has always been the focus of research, because aging is related to disease susceptibility and seriously affects people's quality of life. The diseases also accelerate the aging process, especially the pathological changes of substantive organs, such as cardiac hypertrophy, severely shortened lifespan. So, lesions in organs are both a consequence and a cause of aging. However, the disease in a given organ is not in isolation but is a systemic problem. Our previous study found that thyrotoxicosis mice model has aging characteristics including immunosenescence, lipotoxicity, malnutrition. But all these characteristics will lead to organ senescence, therefore, this study continued to study the aging changes of important organs such as heart, liver, and kidney in thyrotoxicosis mice using tandem mass tags (TMT) proteomics method. The results showed that the excess thyroxine led to cardiac hypertrophy. In the liver, the ability to synthesize functional proteins, detoxify, and metabolism were declined. The effect on the kidney was the decreased ability of detoxify and metabolism. The main finding of the present study was that the acceleration of organ senescence by excess thyroxine was due to proteotoxicity. The shared cause of proteotoxicity in the three organs included the intensify of oxidative phosphorylation, the redundancy production of ribosomes, and the lack of splicing and ubiquitin proteasome system function. Totally, proteotoxicity was another parallel between thyrotoxicosis and aging in addition to lipotoxicity. Our research provided a convenient and appropriate animal model for exploring aging mechanism and antiaging drugs.

19.
FASEB J ; 37(8): e23116, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498235

RESUMEN

Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.


Asunto(s)
Envejecimiento Prematuro , Laminopatías , Humanos , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Proteostasis , Núcleo Celular/metabolismo , Laminas/genética , Laminas/metabolismo , Laminopatías/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutación , Lámina Nuclear/genética , Lámina Nuclear/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA