Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Allergy Asthma Immunol Res ; 16(4): 422-433, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39155740

RESUMEN

Airway remodeling is a key characteristic of allergic asthma. Epithelial-mesenchymal transition (EMT) induced by various factors, particularly transforming growth factor (TGF)-ß1, orchestrates airway remodeling. Protein phosphatase 2A (PP2A), an important serine-threonine phosphatase, is involved in TGF-ß1 production and EMT. Long noncoding RNAs (lncRNAs) have emerged as novel players in regulating EMT. Here, we aimed to explore the effects and mechanisms of action of lincR-PPP2R5C, a lncRNA that affects PP2A activity, on airway remodeling in a mouse model of chronic allergic asthma. LincR-PPP2R5C knockout (KO) alleviated inflammatory responses in house dust mite (HDM)-induced chronic allergic asthma. Moreover, airway remodeling and EMT were reduced in lung tissues of lincR-PPP2R5C KO mice. HDM extract induced EMT in airway epithelial cells, which was decreased following lincR-PPP2R5C KO. Mechanistically, lincR-PPP2R5C deficiency enhanced PP2A activity, which inhibited TGF-ß1 production in epithelial cells. In conclusion, lincR-PPP2R5C deficiency prevented HDM-induced airway remodeling in mice by reversing EMT, which was mediated by the PP2A/TGF-ß1 signaling pathway. Thus, lncRNAs, i.e., lincR-PPP2R5C, may be potential targets to prevent airway remodeling in allergic asthma.

3.
Children (Basel) ; 11(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39201832

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) are a group of diseases that severely affect the physical and mental health of children. The PPP2R5D gene encodes B56δ, the regulatory subunit of protein phosphatase 2A (PP2A). NDDs related to the PPP2R5D gene have recently been defined as Houge-Janssens syndrome 1. METHODS: Clinical/whole exome sequencing was performed on approximately 3000 patients with NDDs from 2017 to 2023. In vitro experiments were performed to assess the impairment of variants to protein expression and the assembly of PP2A holoenzyme. The genetic information and phenotypes of the reported patients, as well as patients in this study, were summarized, and the genotype-phenotype relationship was analyzed. The probability of pathogenic missense variants in PPP2R5D was predicted using AlphaMissense (AM), and the relationship between certain phenotype and 3D protein structural features were analyzed. RESULTS: Thirteen new patients carrying twelve PPP2R5D gene variants were detected, including five novel missense variants and one novel frameshift variant. In vitro experiments revealed that the frameshift variant p.H463Mfs*3 resulted in a ~50 kDa truncated protein with lower expression level. Except for E420K and T536R, other missense variants impaired holoenzyme assembly. Furthermore, we found that pathogenic/likely pathogenic (P/LP) variants that have been reported so far were all missense variants and clustered in three conserved regions, and the likelihood of P/LP mutations located in these conserved regions was extremely high. In addition, the macrocephaly phenotype was related to negatively charged residues involved in substrate recruitment. CONCLUSIONS: We reported thirteen new patients with PPP2R5D gene variants and expanded the PPP2R5D variant spectrum. We confirmed the pathogenicity of novel variants through in vitro experiments. Our findings in genotype-phenotype relationship provide inspiration for genetic counseling and interpretation of variants. We also provide directions for further research on the mechanism of macrocephaly phenotype.

4.
J Biol Chem ; 300(9): 107669, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128717

RESUMEN

Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.

5.
Curr Pharm Biotechnol ; 25(12): 1585-1601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034837

RESUMEN

BACKGROUND: Cantharidin (CTD), a natural toxic compound from blister beetle Mylabris, has been used for cancer treatment for millenary. CTD and its analogs have become mainstream adjuvant drugs with radiotherapy and chemotherapy in clinical applications. However, the detailed pharmacology mechanism of CTD was not fully elucidated. METHODS: Publications of CTD were collected from the Web of Science Core Collection database from 1991 to 2023 using CiteSpace, VOSviewer, and Scimago Graphica software. RESULTS: A total of 1,611 publications of CTD were mainly published in China and the United States. The University of Newcastle has published the most researches. Mcclusey, Adam, Sakoff, Jennette, and Zhang, Yalin had the most CTD publications with higher H. Notably, CTD researches were mainly published in Bioorganic & Medicinal Chemistry Letters and the Journal of Biological Chemistry. Cluster profile results revealed that protein phosphatase 2A (PP2A), human gallbladder carcinoma, Aidi injection, and cell apoptosis were the hotspots. Concentration on the pharmacology function of PP2A subunit regulation, hepatotoxicity, nephrotoxicity, and cardiotoxicity mechanism should be strengthened in the future. CONCLUSION: Bibliometric analysis combined with a systemic review of CTD research first revealed that PP2A and CTD analogs were the knowledge base of CTD, and PP2A subunit regulation and toxic mechanism could be the frontiers of CTD.


Asunto(s)
Bibliometría , Cantaridina , Cantaridina/uso terapéutico , Humanos , Animales , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos
6.
Mol Neurobiol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976130

RESUMEN

Protein phosphatase 2A (PP2A) is an abundant heterotrimeric holoenzyme in eukaryotic cells coordinating with specific kinases to regulate spatial-temporal protein dephosphorylation in various biological processes. However, the function of PP2A in cortical neurogenesis remains largely unknown. Here, we report that neuronal-specific deletion of Pp2acα in mice displayed microcephaly, with significantly smaller brains and defective learning and memory ability. Mechanistically, neuronal Pp2acα deficiency resulted in elevated endogenous DNA damage and activation of ATR/CHK1 signaling. It was further induced by the loss of direct interaction between PP2AC and ATR as well as the function of PP2AC to dephosphorylate ATR. Importantly, ATR/CHK1 signaling dysregulation altered both the expression and activity of several critical downstream factors including P53, P21, Bcl2, and Bax, which led to decreased proliferation of cortical progenitor cells and increased apoptosis in developing cortical neurons. Taken together, our results indicate an essential function of PP2ACα in endogenous DNA damage response-mediated ATR signaling during neurogenesis, and defective PP2ACα in neurons contributes to microcephaly.

7.
Brain Res ; 1841: 149095, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917878

RESUMEN

BACKGROUND: Abnormally elevated homocysteine (Hcy) is recognized as a biomarker and risk factor for Alzheimer's disease (AD). However, the underlying mechanisms by which Hcy affects AD are still unclear. OBJECTIVES: This study aimed to elucidate the effects and mechanisms by which Hcy affects AD-like pathological changes in the hippocampus through in vivo and in vitro experiments, and to investigate whether folic acid (FA) and S-adenosylmethionine (SAM) supplementation could improve neurodegenerative injuries. METHODS: In vitro experiments hippocampal neurons of rat were treated with Hcy, FA or SAM for 24 h; while the hyperhomocysteinemia (HHcy) in Wistar rats was established by intraperitoneal injection of Hcy, and FA was added to feed. The expression of ß-amyloid (Aß), phosphorylated tau protein, presenilin 1 (PS1) at the protein level and the activity of protein phosphatase 2A (PP2A) were detected, the immunopositive cells for Aß and phosphorylated tau protein in the rat hippocampus were also evaluated by immunohistochemical staining. RESULTS: FA and SAM significantly repressed Hcy-induced AD-like pathological changes in the hippocampus, including the increased tau protein phosphorylation at Ser214, Ser396 and the expression of Aß42. In addition, Hcy-induced PS1 expression increased at the protein level and PP2A activity decreased, while FA and SAM were able to retard that. CONCLUSIONS: The increase in PS1 expression and decrease in PP2A activity may be the mechanisms underlying the Hcy-induced AD-like pathology. FA and SAM significantly repressed the Hcy-induced neurodegenerative injury by modulating PS1 and PP2A methylation levels.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ácido Fólico , Hipocampo , Homocisteína , Presenilina-1 , Proteína Fosfatasa 2 , Ratas Wistar , S-Adenosilmetionina , Proteínas tau , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/farmacología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Homocisteína/farmacología , Homocisteína/toxicidad , Ácido Fólico/farmacología , Ratas , Masculino , Presenilina-1/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Metilación/efectos de los fármacos , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/inducido químicamente , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosforilación/efectos de los fármacos , Modelos Animales de Enfermedad
8.
Cell Oncol (Dordr) ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888850

RESUMEN

PURPOSE: Uterine serous carcinoma (USC) is generally associated with poor prognosis due to a high recurrence rate and frequent treatment resistance; hence, there is a need for improved therapeutic strategies. Molecular analysis of USC identified several molecular markers, useful to improve current treatments or identify new druggable targets. PPP2R1A, encoding the Aα subunit of the tumor suppressive Ser/Thr phosphatase PP2A, is mutated in up to 40% of USCs. Here, we investigated the effect of the p.R183W PPP2R1A hotspot variant on treatment response to the nucleoside analogue clofarabine. METHODS AND RESULTS: USC cells stably expressing p.R183W Aα showed increased resistance to clofarabine treatment in vitro and, corroborated by decreased clofarabine-induced apoptosis, G1 phase arrest, DNA-damage (γH2AX) and activation of ATM and Chk1/2 kinases. Phenotypic rescue by pharmacologic PP2A inhibition or dicer-substrate siRNA (dsiRNA)-mediated B56δ subunit knockdown supported a gain-of-function mechanism of Aα p.R183W, promoting dephosphorylation and inactivation of deoxycytidine kinase (dCK), the cellular enzyme responsible for the conversion of clofarabine into its bioactive form. Therapeutic assessment of related nucleoside analogues (gemcitabine, cladribine) revealed similar effects, but in a cell line-dependent manner. Expression of two other PPP2R1A USC mutants (p.P179R or p.S256F) did not affect clofarabine response in our cell models, arguing for mutant-specific effects on treatment outcome as well. CONCLUSIONS: While our results call for PPP2R1A mutant and context-dependent effects upon clofarabine/nucleoside analogue monotherapy, combining clofarabine with a pharmacologic PP2A inhibitor proved synergistically in all tested conditions, highlighting a new generally applicable strategy to improve treatment outcome in USC.

9.
Front Cardiovasc Med ; 11: 1419597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863902

RESUMEN

Background: Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme that controls Ca2+ homeostasis and contractility of the heart via dephosphorylation of regulatory proteins. In some genetically modified mouse models with increased arrhythmogenicity, a reduced expression of the regulatory subunit B56α of PP2A was found as a concomitant effect. Whether there is a general correlation between the abundance of B56α and the promotion of cardiac arrhythmogenesis remains unclear. Methods: The aim of this study was therefore to investigate the role of PP2A-B56α in the propensity for arrhythmic activity in the heart. The experimental analysis of this question has been addressed by using a mouse model with deletion of the PP2A-B56α gene, PPP2R5A (KO), in comparison to wild-type animals (WT). Evidence for arrhythmogenicity was investigated in whole animal, isolated heart and cardiomyocytes by ECG, recording of monophasic action potential (MAP) induced by programmed electrical stimulation (PES), measurement of Ca2+ transients under increased pacing frequencies and determination of total K+ channel currents (I K). Results: ECG measurements showed a prolongation of QT time in KO vs. WT. KO mice exhibited a higher rate of premature ventricular contractions in the ECG. MAP measurements in Langendorff-perfused KO hearts showed increased episodes of ventricular tachyarrhythmia induced by PES. However, the KO hearts showed values for MAP duration that were similar to those in WT hearts. In contrast, KO showed more myocardial cells with spontaneous arrhythmogenic Ca2+ transient events compared to WT. The whole-cell patch-clamp technique applied to ventricular cardiomyocytes revealed comparable peak potassium channel current densities between KO and WT. Conclusion: These findings support the assumption that a decrease or even the loss of PP2A-B56α leads to an increased propensity of triggered arrhythmias. This could be based on the increased spontaneous Ca2+ tansients observed.

10.
J Biol Chem ; 300(7): 107408, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796066

RESUMEN

The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.


Asunto(s)
Proteína Fosfatasa 2 , Proteínas Proto-Oncogénicas c-myc , Humanos , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Unión Proteica , Células HEK293 , Dominios Proteicos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/química , Proteínas de Unión al ADN
11.
Clin Sci (Lond) ; 138(10): 573-597, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718356

RESUMEN

The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.


Asunto(s)
Angiotensina II , Cardiomegalia , Ratones Noqueados , Miocitos Cardíacos , Animales , Angiotensina II/farmacología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Masculino , Humanos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Remodelación Ventricular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Calmodulina , Proteínas del Tejido Nervioso
12.
Cerebellum ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735882

RESUMEN

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

13.
Res Sq ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38659734

RESUMEN

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

14.
Brain Res ; 1838: 148966, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688382

RESUMEN

Thymus vulgaris and Allium cepa are plants with great medicinal importance. Thymol monoterpene and quercetin, which are present in these plants, have anti-Alzheimer's and antioxidant effects. The objectives of this research were investigating the effects of these compounds on the pathogenesis and progress of Alzheimer's disease in cells modeled by formaldehyde. MTT, flow cytometry, and RT-PCR were used to investigate the toxicity, survival rate and apoptosis of the cells, and the expression level of PP2A, GSK3, NMDAR, BACE1, and APP genes, respectively. Also, the total antioxidant capacity of the modeled cells was measured. The results showed that the two compounds as well as the plants extract and essential oil were able to increase the percentage of cell survival; among them, Thymus vulgaris essential oil had the greatest effect (93.55316 % in 48 h exposure). In addition, quercetin was able to reduce the rate of apoptosis in Alzheimer's cells (4.73 %) which was greater than the effects of other compounds. In general, the essential oil of Thymus vulgaris compared to thymol; and quercetin compared to Allium cepa extract showed more improving effects on the expression of genes involved in the disease. All four compounds increased the antioxidant capacity of the modeled cells compared to the control group, and these effects were almost equal between the compounds. According to the obtained results, both plants, especially Thymus vulgaris can be proposed as candidates to be included in the diet of Alzheimer's patients. In addition, polyphenols thymol and quercetin as derivates from the studied plants can be used in new drugs development for Alzheimer's disease, with greater safety than currently used drugs. These results are significant because most of the drug for Alzheimer's treatments such as cholinesterases (e.g. rivastigmine and donepezil) and memantine are chemically based and have many side effects.


Asunto(s)
Enfermedad de Alzheimer , Antioxidantes , Aceites Volátiles , Cebollas , Extractos Vegetales , Quercetina , Timol , Thymus (Planta) , Quercetina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Extractos Vegetales/farmacología , Aceites Volátiles/farmacología , Ratas , Animales , Timol/farmacología , Antioxidantes/farmacología , Células PC12 , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
15.
Biomed Pharmacother ; 173: 116398, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458011

RESUMEN

Breast cancer has become the most prevalent malignancy worldwide; however, therapeutic efficacy is far from satisfactory. To alleviate the burden of this disease, it is imperative to discover novel mechanisms and treatment strategies. Protein phosphatase 2 A (PP2A) comprises a family of mammalian serine/threonine phosphatases that regulate many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathologies, and plays a pivotal role in the initiation and progression of tumours. The role of PP2A as a tumour suppressor has been extensively studied, and its regulation can serve as a target for anticancer therapy. Recent studies have shown that PP2A is a tumour promotor. PP2A-mediated anticancer therapy may involve two opposing mechanisms: activation and inhibition. In general, the contradictory roles of PP2A should not be overlooked, and more work is needed to determine the molecular mechanism by which PP2A affects in tumours. In this review, the literature on the role of PP2A in tumours, especially in breast cancer, was analysed. This review describes relevant targets of breast cancer, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may lead to effective therapeutic strategies or influence drug development in breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo
16.
Pharmacol Rep ; 76(2): 263-272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472637

RESUMEN

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.


Asunto(s)
Enfermedades Renales , Humanos , Enfermedades Renales/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Fibrosis
17.
Exp Cell Res ; 437(1): 113998, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513962

RESUMEN

Plasma saturated free fatty acid (FFA)-induced endothelial dysfunction (ED) contributes to the pathogenesis of atherosclerosis and cardiovascular diseases. However, the mechanism underlying saturated FFA-induced ED remains unclear. This study demonstrated that palmitic acid (PA) induced ED by activating the NADPH oxidase (NOX)/ROS signaling pathway to activate protein phosphatase 4 (PP4) and protein phosphatase 2A (PP2A), thereby reducing endothelial nitric oxide synthase (eNOS) phosphorylation at Ser633 and Ser1177, respectively. Okadaic acid (OA) and fostriecin (FST), which are inhibitors of PP2A, inhibited the PA-induced decreases in eNOS phosphorylation at Ser633 and Ser1177. The antioxidants N-acetylcysteine (NAC) and apocynin (APO) or knockdown of gp91phox or p67phox (NOX subunits) restored PA-mediated downregulation of PP4R2 protein expression and eNOS Ser633 phosphorylation. Knockdown of the PP4 catalytic subunit (PP4c) specifically increased eNOS Ser633 phosphorylation, while silencing the PP2A catalytic subunit (PP2Ac) restored only eNOS Ser1177 phosphorylation. Furthermore, PA dramatically decreased the protein expression of the PP4 regulatory subunit R2 (PP4R2) but not the other regulatory subunits. PP4R2 overexpression increased eNOS Ser633 phosphorylation, nitric oxide (NO) production, cell migration and tube formation but did not change eNOS Ser1177 phosphorylation levels. Coimmunoprecipitation (Co-IP) suggested that PP4R2 and PP4c interacted with the PP4R3α and eNOS proteins. In summary, PA decreases PP4R2 protein expression through the Nox/ROS pathway to activate PP4, which contributes to ED by dephosphorylating eNOS at Ser633. The results of this study suggest that PP4 is a novel therapeutic target for ED and ED-associated vascular diseases.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Fosfoproteínas Fosfatasas , Enfermedades Vasculares , Humanos , Fosforilación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ácido Palmítico/farmacología , Serina/metabolismo , Especies Reactivas de Oxígeno , Células Cultivadas , Proteína Fosfatasa 2/metabolismo , Óxido Nítrico/metabolismo
18.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189098, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555001

RESUMEN

The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.


Asunto(s)
Neoplasias , Proteínas Tirosina Fosfatasas , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Animales , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
19.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L651-L659, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38529552

RESUMEN

Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.


Asunto(s)
Asma , Broncoconstricción , Regulación hacia Abajo , Miocitos del Músculo Liso , Proteína Fosfatasa 2 , Asma/metabolismo , Asma/patología , Humanos , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Animales , Ratones , Regulación hacia Abajo/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Broncoconstricción/efectos de los fármacos , Músculo Liso/metabolismo , Músculo Liso/patología , Músculo Liso/efectos de los fármacos , Masculino , Bronquios/patología , Bronquios/metabolismo , Bronquios/efectos de los fármacos , Calcio/metabolismo , Femenino , Ratones Endogámicos C57BL
20.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339122

RESUMEN

Alterations in angiogenic properties play a pivotal role in the manifestation and onset of various pathologies, including vascular diseases and cancer. Thrombospondin-1 (TSP1) protein is one of the master regulators of angiogenesis. This study unveils a novel aspect of TSP1 regulation through reversible phosphorylation. The silencing of the B55α regulatory subunit of protein phosphatase 2A (PP2A) in endothelial cells led to a significant decrease in TSP1 expression. Direct interaction between TSP1 and PP2A-B55α was confirmed via various methods. Truncated TSP1 constructs were employed to identify the phosphorylation site and the responsible kinase, ultimately pinpointing PKC as the enzyme phosphorylating TSP1 on Ser93. The biological effects of B55α-TSP1 interaction were also analyzed. B55α silencing not only counteracted the increase in TSP1 expression during wound closure but also prolonged wound closure time. Although B55α silenced cells initiated tube-like structures earlier than control cells, their spheroid formation was disrupted, leading to disintegration. Cells transfected with phosphomimic TSP1 S93D exhibited smaller spheroids and reduced effectiveness in tube formation, revealing insights into the effects of TSP1 phosphorylation on angiogenic properties. In this paper, we introduce a new regulatory mechanism of angiogenesis by reversible phosphorylation on TSP1 S93 by PKC and PP2A B55α.


Asunto(s)
Células Endoteliales , Proteína Fosfatasa 2 , Angiogénesis , Células Endoteliales/metabolismo , Fosforilación , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Trombospondina 1/genética , Trombospondina 1/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA