Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(9): e5153, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39167037

RESUMEN

Assembly of nanoparticles into superlattices yields nanomaterials with novel properties. We have recently shown that engineered protein cages are excellent building blocks for the assembly of inorganic nanoparticles into highly structured hybrid materials, with unprecedented precision. In this study, we show that the protein matrix, composed of surface-charged protein cages, can be readily tuned to achieve a number of different crystalline assemblies. Simply by altering the assembly conditions, different types of crystalline structures were produced, without the need to further modify the cages. Future work can utilize these new protein scaffolds to create nanoparticle superlattices with various assembly geometries and thus tune the functionality of these hybrid materials.


Asunto(s)
Ingeniería de Proteínas , Ingeniería de Proteínas/métodos , Proteínas/química , Nanopartículas/química , Modelos Moleculares , Cristalización , Propiedades de Superficie
2.
ACS Nano ; 18(36): 25325-25336, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189351

RESUMEN

This study focuses on the design and characterization of binary nanoparticle superlattices: Two differently sized, supercharged protein nanocages are used to create a matrix for nanoparticle arrangement. We have previously established the assembly of protein nanocages of the same size. Here, we present another approach for multicomponent biohybrid material synthesis by successfully assembling two differently sized supercharged protein nanocages with different symmetries. Typically, the ordered assembly of objects with nonmatching symmetry is challenging, but our electrostatic-based approach overcomes the symmetry mismatch by exploiting electrostatic interactions between oppositely charged cages. Moreover, our study showcases the use of nanoparticles as a contrast enhancer in an elegant way to gain insights into the structural details of crystalline biohybrid materials. The assembled materials were characterized with various methods, including transmission electron microscopy (TEM) and single-crystal small-angle X-ray diffraction (SC-SAXD). We employed cryo-plasma-focused ion beam milling (cryo-PFIB) to prepare lamellae for the investigation of nanoparticle sublattices via electron cryo-tomography. Importantly, we refined superlattice structure data obtained from single-crystal SAXD experiments, providing conclusive evidence of the final assembly type. Our findings highlight the versatility of protein nanocages for creating distinctive types of binary superlattices. Because the nanoparticles do not influence the type of assembly, protein cage matrices can combine various nanoparticles in the solid state. This study not only contributes to the expanding repertoire of nanoparticle assembly methods but also demonstrates the power of advanced characterization techniques in elucidating the structural intricacies of these biohybrid materials.


Asunto(s)
Tamaño de la Partícula , Nanopartículas/química , Proteínas/química
3.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 107-115, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767964

RESUMEN

Imaging scaffolds composed of designed protein cages fused to designed ankyrin repeat proteins (DARPins) have enabled the structure determination of small proteins by cryogenic electron microscopy (cryo-EM). One particularly well characterized scaffold type is a symmetric tetrahedral assembly composed of 24 subunits, 12 A and 12 B, which has three cargo-binding DARPins positioned on each vertex. Here, the X-ray crystal structure of a representative tetrahedral scaffold in the apo state is reported at 3.8 Šresolution. The X-ray crystal structure complements recent cryo-EM findings on a closely related scaffold, while also suggesting potential utility for crystallographic investigations. As observed in this crystal structure, one of the three DARPins, which serve as modular adaptors for binding diverse `cargo' proteins, present on each of the vertices is oriented towards a large solvent channel. The crystal lattice is unusually porous, suggesting that it may be possible to soak crystals of the scaffold with small (≤30 kDa) protein cargo ligands and subsequently determine cage-cargo structures via X-ray crystallography. The results suggest the possibility that cryo-EM scaffolds may be repurposed for structure determination by X-ray crystallography, thus extending the utility of electron-microscopy scaffold designs for alternative structural biology applications.


Asunto(s)
Repetición de Anquirina , Modelos Moleculares , Cristalografía por Rayos X/métodos , Microscopía por Crioelectrón/métodos , Ligandos , Conformación Proteica , Unión Proteica , Expresión Génica
4.
Protein Sci ; 33(4): e4973, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533546

RESUMEN

Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Proteínas , Proteínas/química
5.
Structure ; 32(6): 751-765.e11, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38513658

RESUMEN

Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, but their creation remains challenging. Here, we apply computational approaches to design a suite of tetrahedrally symmetric, self-assembling protein cages. For the generation of docked conformations, we emphasize a protein fragment-based approach, while for sequence design of the de novo interface, a comparison of knowledge-based and machine learning protocols highlights the power and increased experimental success achieved using ProteinMPNN. An analysis of design outcomes provides insights for improving interface design protocols, including prioritizing fragment-based motifs, balancing interface hydrophobicity and polarity, and identifying preferred polar contact patterns. In all, we report five structures for seven protein cages, along with two structures of intermediate assemblies, with the highest resolution reaching 2.0 Å using cryo-EM. This set of designed cages adds substantially to the body of available protein nanoparticles, and to methodologies for their creation.


Asunto(s)
Aprendizaje Automático , Proteínas , Proteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Simulación del Acoplamiento Molecular , Microscopía por Crioelectrón/métodos , Modelos Moleculares
6.
ACS Synth Biol ; 13(1): 157-167, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38133598

RESUMEN

Protein nanocages have diverse applications in medicine and biotechnology, including molecular delivery. However, although numerous studies have demonstrated the ability of protein nanocages to encapsulate various molecular species, limited methods are available for subsequently opening a nanocage for cargo release under specific conditions. A modular platform with a specific protein-target-based mechanism of nanocage opening is notably lacking. To address this important technology gap, we present a new class of designed protein cages, the Ligand-Operable Cage (LOC). LOCs primarily comprise a protein nanocage core and a fused surface binding adaptor. The geometry of the LOC is designed so that binding of a target protein ligand (or multiple copies thereof) to the surface binder is sterically incompatible with retention of the assembled state of the cage. Therefore, the tight binding of a target ligand drives cage disassembly by mass action, subsequently exposing the encapsulated cargo. LOCs are modular; direct substitution of the surface binder sequence can reprogram the nanocage to open in response to any target protein ligand of interest. We demonstrate these design principles using both a natural and a designed protein cage as the core, with different proteins acting as the triggering ligand and with different reporter readouts─fluorescence unquenching and luminescence─for cage disassembly. These developments advance the critical problem of targeted molecular delivery and detection.


Asunto(s)
Biotecnología , Proteínas , Unión Proteica , Ligandos , Proteínas/química , Fluorescencia
7.
bioRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986890

RESUMEN

Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, e.g., so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.

8.
ACS Nano ; 17(21): 21206-21215, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37902649

RESUMEN

The application of fluorescent proteins (FPs) in optoelectronics is hindered by the need for effective protocols to stabilize them under device preparation and operational conditions. Factors such as high temperatures, irradiation, and organic solvent exposure contribute to the denaturation of FPs, resulting in a low device performance. Herein, we focus on addressing the photoinduced heat generation associated with FP motion and rapid heat transfer. This leads to device temperatures of approximately 65 °C, causing FP-denaturation and a subsequent loss of device functionality. We present a FP stabilization strategy involving the integration of electrostatically self-assembled FP-apoferritin cocrystals within a silicone-based color down-converting filter. Three key achievements characterize this approach: (i) an engineering strategy to design positively supercharged FPs (+22) without compromising photoluminescence and thermal stability compared to their native form, (ii) a carefully developed crystallization protocol resulting in highly emissive cocrystals that retain the essential photoluminescence features of the FPs, and (iii) a strong reduction of the device's working temperature to 40 °C, leading to a 40-fold increase in Bio-HLEDs stability compared to reference devices.

9.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873110

RESUMEN

Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, while methods for their creation remain challenging and unpredictable. In the present study, we apply new computational approaches to design a suite of new tetrahedrally symmetric, self-assembling protein cages. For the generation of docked poses, we emphasize a protein fragment-based approach, while for de novo interface design, a comparison of computational protocols highlights the power and increased experimental success achieved using the machine learning program ProteinMPNN. In relating information from docking and design, we observe that agreement between fragment-based sequence preferences and ProteinMPNN sequence inference correlates with experimental success. Additional insights for designing polar interactions are highlighted by experimentally testing larger and more polar interfaces. In all, using X-ray crystallography and cryo-EM, we report five structures for seven protein cages, with atomic resolution in the best case reaching 2.0 Å. We also report structures of two incompletely assembled protein cages, providing unique insights into one type of assembly failure. The new set of designed cages and their structures add substantially to the body of available protein nanoparticles, and to methodologies for their creation.

10.
Biomolecules ; 13(7)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37509158

RESUMEN

Beta-2 microglobulin (B2M) is an immune system protein that is found on the surface of all nucleated human cells. B2M is naturally shed from cell surfaces into the plasma, followed by renal excretion. In patients with impaired renal function, B2M will accumulate in organs and tissues leading to significantly reduced life expectancy and quality of life. While current hemodialysis methods have been successful in managing electrolyte as well as small and large molecule disturbances arising in chronic renal failure, they have shown only modest success in managing plasma levels of B2M and similar sized proteins, while sparing important proteins such as albumin. We describe a systematic protein design effort aimed at adding the ability to selectively remove specific, undesired waste proteins such as B2M from the plasma of chronic renal failure patients. A novel nanoparticle built using a tetrahedral protein assembly as a scaffold that presents 12 copies of a B2M-binding nanobody is described. The designed nanoparticle binds specifically to B2M through protein-protein interactions with nanomolar binding affinity (~4.2 nM). Notably, binding to the nanoparticle increases the effective size of B2M by over 50-fold, offering a potential selective avenue for separation based on size. We present data to support the potential utility of such a nanoparticle for removing B2M from plasma by either size-based filtration or by polyvalent binding to a stationary matrix under blood flow conditions. Such applications could address current shortcomings in the management of problematic mid-sized proteins in chronic renal failure patients.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Fallo Renal Crónico/tratamiento farmacológico , Fallo Renal Crónico/terapia , Calidad de Vida , Diálisis Renal , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/terapia , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacología , Nanopartículas/uso terapéutico
11.
Methods Mol Biol ; 2671: 69-78, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37308638

RESUMEN

The ferritin family is distributed in nearly all organisms and protects them from iron-induced oxidative damage. Besides, its highly symmetrical structure and biochemical features make it an appealing material for biotechnological applications, such as building blocks for multidimensional assembly, templates for nano-reactors, and scaffolds for encapsulation and delivery of nutrients and drugs. Moreover, it is of great significance to construct ferritin variants with different properties, size, and shape to further broaden its application. In this chapter, we present a routine process of the ferritin redesign and the characterization method of the protein structure to provide a feasible scheme.


Asunto(s)
Ferritinas , Hierro , Biotecnología , Nutrientes , Estrés Oxidativo
12.
Methods Mol Biol ; 2671: 273-305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37308651

RESUMEN

Molecular dynamics (MD) simulations enable the description of the physical movement of the system over time based on classical mechanics at various scales depending on the models. Protein cages are a particular group of different-size proteins with hollow, spherical structures and are widely found in nature, which have vast applications in numerous fields. The MD simulation of cage proteins is particularly important as a powerful tool to unveil their structures and dynamics for various properties, assembly behavior, and molecular transport mechanisms. Here, we describe how to conduct MD simulations for cage proteins, especially technical details, and analyze some of the properties of interest using GROMACS/NAMD packages.


Asunto(s)
Simulación de Dinámica Molecular , Movimiento , Física
13.
ACS Appl Bio Mater ; 6(2): 591-602, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36626688

RESUMEN

Diagnostic medical imaging utilizes magnetic resonance (MR) to provide anatomical, functional, and molecular information in a single scan. Nanoparticles are often labeled with Gd(III) complexes to amplify the MR signal of contrast agents (CAs) with large payloads and high proton relaxation efficiencies (relaxivity, r1). This study examined the MR performance of two structurally unique cages, AaLS-13 and OP, labeled with Gd(III). The cages have characteristics relevant for the development of theranostic platforms, including (i) well-defined structure, symmetry, and size; (ii) the amenability to extensive engineering; (iii) the adjustable loading of therapeutically relevant cargo molecules; (iv) high physical stability; and (v) facile manufacturing by microbial fermentation. The resulting conjugates showed significantly enhanced proton relaxivity (r1 = 11-18 mM-1 s-1 at 1.4 T) compared to the Gd(III) complex alone (r1 = 4 mM-1 s-1). Serum phantom images revealed 107% and 57% contrast enhancements for Gd(III)-labeled AaLS-13 and OP cages, respectively. Moreover, proton nuclear magnetic relaxation dispersion (1H NMRD) profiles showed maximum relaxivity values of 50 mM-1 s-1. Best-fit analyses of the 1H NMRD profiles attributed the high relaxivity of the Gd(III)-labeled cages to the slow molecular tumbling of the conjugates and restricted local motion of the conjugated Gd(III) complex.


Asunto(s)
Nanopartículas , Protones , Medios de Contraste/química , Gadolinio/química , Imagen por Resonancia Magnética/métodos
14.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675043

RESUMEN

Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.


Asunto(s)
Agricultura Molecular , Virus de Plantas , Animales , Humanos , Plantas Modificadas Genéticamente/metabolismo , Vacunas Sintéticas , Virus de Plantas/genética , Anticuerpos Monoclonales/metabolismo
15.
Angew Chem Int Ed Engl ; 61(52): e202214001, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36288455

RESUMEN

Cells use self-assembled biomaterials such as lipid membranes or proteinaceous shells to coordinate thousands of reactions that simultaneously take place within crowded spaces. However, mimicking such spatial organization for synthetic applications in engineered systems remains a challenge, resulting in inferior catalytic efficiency. In this work, we show that protein cages as an ideal scaffold to organize enzymes to enhance cascade reactions both in vitro and in living cells. We demonstrate that not only enzyme-enzyme distance but also the improved Km value contribute to the enhanced reaction rate of cascade reactions. Three sequential enzymes for lycopene biosynthesis have been co-localized on the exterior of the engineered protein cages in Escherichia coli, leading to an 8.5-fold increase of lycopene production by streamlining metabolic flux towards its biosynthesis. This versatile system offers a powerful tool to achieve enzyme spatial organization for broad applications in biocatalysis.


Asunto(s)
Escherichia coli , Proteínas , Licopeno , Proteínas/metabolismo , Biocatálisis , Escherichia coli/metabolismo , Enzimas/metabolismo
16.
Chembiochem ; 23(20): e202200332, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35951442

RESUMEN

Although viruses have been successfully repurposed as vaccines, antibiotics, and anticancer therapeutics, they also raise concerns regarding genome integration and immunogenicity. Virus-like particles and non-viral protein cages represent a potentially safer alternative but often lack desired functionality. Here, we investigated the utility of a new enzymatic bioconjugation method, called lysine acylation using conjugating enzymes (LACE), to chemoenzymatically modify protein cages. We equipped two structurally distinct protein capsules with a LACE-reactive peptide tag and demonstrated their modification with diverse ligands. This modular approach combines the advantages of chemical conjugation and genetic fusion and allows for site-specific modification with recombinant proteins as well as synthetic peptides with facile control of the extent of labeling. This strategy has the potential to fine-tune protein containers of different shape and size by providing them with new properties that go beyond their biologically native functions.


Asunto(s)
Lisina , Péptidos , Lisina/metabolismo , Péptidos/metabolismo , Proteínas Recombinantes/genética , Acilación , Antibacterianos
17.
Front Bioeng Biotechnol ; 10: 867119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402394

RESUMEN

Vaccines represent one of the most successful public health initiatives worldwide. However, despite the vast number of highly effective vaccines, some infectious diseases still do not have vaccines available. New technologies are needed to fully realize the potential of vaccine development for both emerging infectious diseases and diseases for which there are currently no vaccines available. As can be seen by the success of the COVID-19 mRNA vaccines, nanoscale platforms are promising delivery vectors for effective and safe vaccines. Synthetic nanoscale platforms, including liposomes and inorganic nanoparticles and microparticles, have many advantages in the vaccine market, but often require multiple doses and addition of artificial adjuvants, such as aluminum hydroxide. Biologically derived nanoparticles, on the other hand, contain native pathogen-associated molecular patterns (PAMPs), which can reduce the need for artificial adjuvants. Biological nanoparticles can be engineered to have many additional useful properties, including biodegradability, biocompatibility, and are often able to self-assemble, thereby allowing simple scale-up from benchtop to large-scale manufacturing. This review summarizes the state of the art in biologically derived nanoparticles and their capabilities as novel vaccine platforms.

18.
Chemistry ; 28(11): e202104341, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043998

RESUMEN

Supramolecular self-assembly of biomolecules provides a powerful bottom-up strategy to build functional nanostructures and materials. Among the different biomacromolecules, protein cages offer various advantages including uniform size, versatility, multi-modularity, and high stability. Additionally, protein cage crystals present confined microenvironments with well-defined dimensions. On the other hand, molecular hosts, such as cyclophanes, possess a defined cavity size and selective recognition of guest molecules. However, the successful combination of macrocycles and protein cages to achieve functional co-crystals has remained limited. In this study, we demonstrate electrostatic binding between cationic pillar[5]arenes and (apo)ferritin cages that results in porous and crystalline frameworks. The electrostatically assembled crystals present a face-centered cubic (FCC) lattice and have been characterized by means of small-angle X-ray scattering and cryo-TEM. These hierarchical structures result in a multiadsorbent framework capable of hosting both organic and inorganic pollutants, such as dyes and toxic metals, with potential application in water-remediation technologies.


Asunto(s)
Nanoestructuras , Ferritinas/química , Nanoestructuras/química , Porosidad , Electricidad Estática , Agua/química
19.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078933

RESUMEN

Protein nanocages (PNCs) in cells and viruses have inspired the development of self-assembling protein nanomaterials for various purposes. Despite the successful creation of artificial PNCs, the de novo design of PNCs with defined permeability remains challenging. Here, we report a prototype oxygen-impermeable PNC (OIPNC) assembled from the vertex protein of the ß-carboxysome shell, CcmL, with quantum dots as the template via interfacial engineering. The structure of the cage was solved at the atomic scale by combined solid-state NMR spectroscopy and cryoelectron microscopy, showing icosahedral assembly of CcmL pentamers with highly conserved interpentamer interfaces. Moreover, a gating mechanism was established by reversibly blocking the pores of the cage with molecular patches. Thus, the oxygen permeability, which was probed by an oxygen sensor inside the cage, can be completely controlled. The CcmL OIPNC represents a PNC platform for oxygen-sensitive or oxygen-responsive storage, catalysis, delivery, sensing, etc.


Asunto(s)
Oxígeno/metabolismo , Proteínas/metabolismo , Microscopía por Crioelectrón/métodos , Espectroscopía de Resonancia Magnética/métodos , Permeabilidad
20.
J Nanobiotechnology ; 19(1): 159, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051806

RESUMEN

In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.


Asunto(s)
Albúminas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Nanopartículas/química , Proteínas de Plantas/administración & dosificación , Paclitaxel Unido a Albúmina/uso terapéutico , Albúminas/química , Animales , Portadores de Fármacos/uso terapéutico , Composición de Medicamentos , Gelatina/química , Humanos , Proteínas de la Leche/administración & dosificación , Proteínas de la Leche/química , Neoplasias/tratamiento farmacológico , Paclitaxel/administración & dosificación , Proteínas de Plantas/química , Albúmina Sérica/administración & dosificación , Albúmina Sérica/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA