Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985257

RESUMEN

Propionate is an important platform chemical that is available through petrochemical synthesis. Bacterial propionate formation is considered an alternative, as bacteria can convert waste substrates into valuable products. In this regard, research primarily focused on propionibacteria due to high propionate titers achieved from different substrates. Whether other bacteria could also be attractive producers is unclear, mostly because little is known about these strains. Therefore, two thus far less researched strains, Anaerotignum propionicum and Anaerotignum neopropionicum, were investigated with regard to their morphologic and metabolic features. Microscopic analyses revealed a negative Gram reaction despite a Gram-positive cell wall as well as surface layers for both strains. Furthermore, growth, product profiles, and the potential for propionate formation from sustainable substrates, i.e., ethanol or lignocellulosic sugars, were assessed. Results showed that both strains can oxidize ethanol to different extents. While A. propionicum only partially used ethanol, A. neopropionicum converted 28.3 mM ethanol to 16.4 mM propionate. Additionally, the ability of A. neopropionicum to produce propionate from lignocellulose-derived substrates was analyzed, leading to propionate concentrations of up to 14.5 mM. Overall, this work provides new insights into the physiology of the Anaerotignum strains, which can be used to develop effective propionate producer strains.

2.
Appl Microbiol Biotechnol ; 106(22): 7547-7562, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36282302

RESUMEN

The carboxylic acid propionate is a valuable platform chemical with applications in various fields. The biological production of this acid has become of great interest as it can be considered a sustainable alternative to petrochemical synthesis. In this work, Clostridium saccharoperbutylacetonicum was metabolically engineered to produce propionate via the acrylate pathway. In total, the established synthetic pathway comprised eight genes encoding the enzymes catalyzing the conversion of pyruvate to propionate. These included the propionate CoA-transferase, the lactoyl-CoA dehydratase, and the acryloyl-CoA reductase from Anaerotignum neopropionicum as well as a D-lactate dehydrogenase from Leuconostoc mesenteroides subsp. mesenteroides. Due to difficulties in assembling all genes on one plasmid under the control of standard promoters, the PtcdB-tcdR promoter system from Clostridium difficile was integrated into a two-plasmid system carrying the acrylate pathway genes. Several promoters were analyzed for their activity in C. saccharoperbutylacetonicum using the fluorescence-activating and absorption-shifting tag (FAST) as a fluorescent reporter to identify suitable candidates to drive tcdR expression. After selecting the lactose-inducible PbgaL promoter, engineered C. saccharoperbutylacetonicum strains produced 0.7 mM propionate upon induction of gene expression. The low productivity was suspected to be a consequence of a metabolic imbalance leading to acryloyl-CoA accumulation in the cells. To even out the proposed imbalance, the propionate-synthesis operons were rearranged, thereby increasing the propionate concentration by almost four-fold. This study is the first one to report recombinant propionate production using a clostridial host strain that has opened a new path towards bio-based propionate to be improved further in subsequent work. KEY POINTS: • Determination of promoter activities in C. saccharoperbutylacetonicum using FAST. • Implementation of propionate production in C. saccharoperbutylacetonicum. • Elevation of propionate production by 375% to a concentration of 3 mM.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Propionatos/metabolismo , Toxinas Bacterianas/metabolismo , Clostridium/genética , Clostridium/metabolismo , Acrilatos/metabolismo
3.
Front Microbiol ; 11: 599438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384675

RESUMEN

Production of volatile fatty acids (VFAs), fundamental building blocks for the chemical industry, depends on fossil fuels but organic waste is an emerging alternative substrate. Lactate produced from sugar-containing waste streams can be further processed to VFAs. In this study, electrofermentation (EF) in a two-chamber cell is proposed to enhance propionate production via lactate fermentation. At an initial pH of 5, an applied potential of -1 V vs. Ag/AgCl favored propionate production over butyrate from 20 mM lactate (with respect to non-electrochemical control incubations), due to the pH buffering effect of the cathode electrode, with production rates up to 5.9 mM d-1 (0.44 g L-1 d-1). Microbial community analysis confirmed the enrichment of propionate-producing microorganisms, such as Tyzzerella sp. and Propionibacterium sp. Organisms commonly found in microbial electrosynthesis reactors, such as Desulfovibrio sp. and Acetobacterium sp., were also abundant at the cathode, indicating their involvement in recycling CO2 produced by lactate fermentation into acetate, as confirmed by stoichiometric calculations. Propionate was the main product of lactate fermentation at substrate concentrations up to 150 mM, with a highest production rate of 12.9 mM d-1 (0.96 g L-1 d-1) and a yield of 0.48 mol mol-1 lactate consumed. Furthermore, as high as 81% of the lactate consumed (in terms of carbon) was recovered as soluble product, highlighting the potential for EF application with high-carbon waste streams, such as cheese whey or other food wastes. In summary, EF can be applied to control lactate fermentation toward propionate production and to recycle the resulting CO2 into acetate, increasing the VFA yield and avoiding carbon emissions and addition of chemicals for pH control.

4.
Front Microbiol ; 9: 2764, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524394

RESUMEN

The rumen microbial complex adaptive mechanism invalidates various methane (CH4) mitigation strategies. Shifting the hydrogen flow toward alternative electron acceptors, such as propionate, was considered to be a meaningful mitigation strategy. A completely randomized design was applied in in vitro incubation to investigate the effects of replacing forage fiber with non-forage fiber sources (NFFS) in diets on methanogenesis, hydrogen metabolism, propionate production and the methanogenic and bacterial community. There are two treatments in the current study, CON (a basic total mixed ration) and TRT (a modified total mixed ration). The dietary treatments were achieved by partly replacing forage fiber with NFFS (wheat bran and soybean hull) to decrease forage neutral detergent fiber (fNDF) content from 24.0 to 15.8%, with the composition and inclusion rate of other dietary ingredients remaining the same in total mixed rations. The concentrations of CH4, hydrogen (H2) and volatile fatty acids were determined using a gas chromatograph. The archaeal and bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the relative abundance of methanogenic and bacterial communities. The results revealed that the concentration of propionate was significantly increased, while the concentration of acetate and the acetate to propionate ratio were not affected by treatments. Compared with CON, the production of H2 increased by 8.45% and the production of CH4 decreased by 14.06%. The relative abundance of Methanomassiliicoccus was significantly increased, but the relative abundance of Methanobrevibacter tended to decrease in TRT group. At the bacterial phylum level, the TRT group significantly decreased the relative abundance of Firmicutes and tended to increase the relative abundance of Bacteroidetes. The replacement of forage fiber with NFFS in diets can affect methanogenesis by shifting the hydrogen flow toward propionate, and part is directed to H2 in vitro. The shift was achieved by a substitution of Firmicutes by Bacteroidetes, another substitution of Methanobrevibacter by Methanomassiliicoccus. Theoretical predictions of displacements of H2 metabolism from methanogenesis to propionate production was supported by the dietary intervention in vitro.

5.
J Appl Microbiol ; 123(1): 29-40, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28425572

RESUMEN

AIMS: This study was conducted to isolate and identify propionate-producing bacteria that can be used as an inoculum in improving wet brewers grains and rumen fermentation via increasing propionate concentration. METHODS AND RESULTS: A strain of Lactobacillus that exhibits high levels of propionate production was identified and characterized as Lactobacillus mucosae 521129 by 16S rRNA gene sequencing and phylogenetic analyses. Wet brewers grains were fermented through L. mucosae inoculation and resulted in an increase in propionate concentration. Fermented wet brewers grains were used in in vitro rumen fermentation and revealed that L. mucosae-fermented wet brewers grains produced more gas and had higher accumulations propionate and total volatile fatty acid (VFA) than the control. The fewest methanogen DNA copies were detected in L. mucosae-fermented wet brewers grains. CONCLUSION: Identified L. mucosae improved the fermentation of wet brewers grains and the in vitro rumen fermentation via increasing propionate and total VFA concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: The presented research provided the identification of L. mucosae 521129 as a propionate producer and was metabolically profiled. Furthermore, data present the putative application of this organism in improving the fermentation of wet brewers grains and in vitro rumen fermentation.

6.
FEMS Microbiol Ecol ; 92(12)2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27633926

RESUMEN

Fermentation is a key process in many anaerobic environments. Varying the concentration of electron donor fed to a fermenting community is known to shift the distribution of products between hydrogen, fatty acids and alcohols. Work to date has focused mainly on the fermentation of glucose, and how the microbial community structure is affected has not been explored. We fed ethanol, lactate, glucose, sucrose or molasses at 100 me- eq. L-1, 200 me- eq. L-1 or 400 me- eq. L-1 to batch-fed cultures with fermenting, methanogenic communities. In communities fed high concentrations of electron donor, the fraction of electrons channeled to methane decreased, from 34% to 6%, while the fraction of electrons channeled to short chain fatty acids increased, from 52% to 82%, averaged across all electron donors. Ethanol-fed cultures did not produce propionate, but did show an increase in electrons directed to acetate as initial ethanol concentration increased. In glucose, sucrose, molasses and lactate-fed cultures, propionate accumulation co-occurred with known propionate producing organisms. Overall, microbial communities were determined by the substrate provided, rather than its initial concentration, indicating that a change in community function, rather than community structure, is responsible for shifts in the fermentation products produced.


Asunto(s)
Bacteroidaceae/metabolismo , Clostridiales/metabolismo , Ácidos Grasos Volátiles/biosíntesis , Fermentación/fisiología , Metano/biosíntesis , Oxígeno/metabolismo , Acetatos/metabolismo , Anaerobiosis/fisiología , Reactores Biológicos , Etanol/química , Glucosa/metabolismo , Hidrógeno/química , Concentración de Iones de Hidrógeno , Melaza , Propionatos/metabolismo , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA